

Introduction to LabVIEW and
Computer-Based
Measurements

Rapini
Immagine inserita

Rapini
Immagine inserita

Rapini
Immagine inserita

ni.com/daq 2

Contents

MANDATORY:

Chapter 1 Hardware Configuration and Taking First Measurement ... 5

Chapter 2 Using Examples to Automate Measurements with LabVIEW NXG ... 17

OPTIONAL:

Chapter 3 Temperature Measurement and Data Logging .. 26

Chapter 4 Combining Measurements from Light and Temperature ... 47

Chapter 5 Strain Gage Measurement with User LED Feedback .. 63

Chapter 6 Audio Input and Output with Analysis .. 92

Chapter 7 Vibration Measurements and Analog Output Control ... 122

ni.com/daq 5

Chapter 1 Hardware Configuration and Taking First Measurement

ni.com/daq 6

Goals • Connect your NI CompactDAQ system to the PC

• Configure your hardware and verify signal connections using LabVIEW NXG.
Acquire and record temperature data to perform a limit test to take your first
measurement.

Part A Hardware Connection and Setup

The hardware for this seminar includes many measurement modules to give you the best
possible understanding of the value of modular data acquisition platforms. Today, you can
explore analog voltage, digital input, accelerometer, strain and temperature measurement as
well as digital output and voltage generation. For more information about the modules you see in
the chassis or to learn more about NI CompactDAQ, check out ni.com/compactdaq.

1. Before beginning any of the following exercises, ensure that your chassis is connected to
your PC via the supplied USB cable and both the PC and the NI CompactDAQ chassis have
power. Both the green Power LED and amber Ready LED should be lit before you begin
configuring your chassis in software.

2. Take a moment to go over the connections in the demo box. Make sure that all modules
are securely seated in the chassis. Additionally, if any wires are loose or something
appears missing or broken, alert your instructor.

3. Once you have confirmed everything is connected and powered on, proceed to Part B.

Part B Software Configuration

To set-up your measurement system, use LabVIEW NXG to connect to and configure your NI data
acquisition hardware. In this exercise, you will discover your NI CompactDAQ chassis and
configure your measurement channels in LabVIEW NXG to start acquiring data.

Note: Only NI data acquisition devices and third-party instruments are supported and
discoverable in LabVIEW NXG. To connect to other hardware, such as CompactRIO controllers,
real-time PXI systems, and RF hardware, use LabVIEW 201x and Measurement & Automation
Explorer.

1. Once your hardware is connected and powered on, open LabVIEW NXG by navigating to
Windows » LabVIEW NXG.

ni.com/daq 7

Figure 1-1 The welcome screen appears every time LabVIEW NXG is opened to give you several paths to discover

hardware, start a project, or to access learning materials.

The options, shown in Figure 1-1, are:

a. Launch a Project- Create a new LabVIEW project from scratch or continue
building an existing program.

b. Explore Your Hardware- Discover and configure hardware connected to your
system prior to taking measurements using SystemDesigner.

c. Learn to Program- Learn new skills and concepts with tutorials, examples, and
real-world applications.

NOTE: As you move forward creating programs and taking measurements, you can always return

to this home screen of LabVIEW NXG by selecting the Home Icon at the top left of the
window.

2. Select Explore Your Hardware. This will bring up the SystemDesigner. In the
SystemDesigner view, you can see the hardware available to your system, including your
PC, peripherals like integrated webcams, and your CompactDAQ hardware. Note the
modules listed under the CompactDAQ Chassis, and verify that they match the modules
in your system.

ni.com/daq 8

Figure 1-2: All the hardware that is connected to your system will be displayed in the Live tab of SystemDesigner.

3. After installing new hardware or software, it is recommended to test the connectivity of

the CompactDAQ chassis. You can do this using a Self-Test. Click on the NI CompactDAQ
Chassis. In the configuration window to the right of the screen, expand the
Troubleshooting tab, and click Self-Test.

Figure 1-3: After clicking on the NI CompactDAQ chassis, you can access documentation, troubleshooting, and more

information about your device in the Configuration pane.

ni.com/daq 9

If your chassis is properly connected and able to communicate with your PC, then you
will see the following dialog box:

4. In the configuration pane to the right of the screen, open the Documentation tab. Here,
you can view hardware documentation, such as pinouts, manuals, and specifications that
are useful to reference when connecting to your device. You can access this information
for the CompactDAQ chassis (pictured below), or for individual modules.

Figure 1-4:View pinout information to ensure correct connections when setting up hardware.

5. For many applications, simply using the default assigned names is not sufficient. Within

LabVIEW NXG, you can rename your modules to match the module type or
measurement.

a. To rename each module, select each module and update the Device Name field
in the Identity tab of the Configuration Pane.

ni.com/daq 10

Figure 1-5: Change the names of modules by updating the name in the Device Name field.

b. Rename each of the module to the following descriptive names. These will be

used to easily identify your modules in later exercises.

Slot Number Module Descriptive Name

1 9236 Strain

2 9213 Temperature

3 9472 Digital_out

4 9263 Voltage_out

7 9234 Sound_Vibration

8 9215 Voltage_in

Figure 1-6: Name all modules according to the table above.

ni.com/daq 11

6. To check the signal connections to the NI CompactDAQ chassis, you will use a
Measurement Panel. As an example, we will check the signal connectivity of the NI 9234
analog input, Sound_Vibration, module.

a. Click on the Sound_Vibration module and select Create Analog Input… from the
Use Hardware tab of the Configuration Pane.

Figure 1-4: Measurement Panels let you check your signal connections without writing any code.

b. Selecting Create Analog Input opens a Measurement Panel to check the signals

on each of the channels of the module. Immediately, you should see voltage
measured scaled to acceleration units from the NI 9234:

Figure 1-5: The Measurement Panel lets you instantly view your data and configure your hardware for your

measurement.

c. Use the Configuration Pane on the right to modify the channel settings for your

measurement.
i. Change the signal type to Accelerometer.

ii. Change the minimum and maximum values to -1 g and +1 g respectively.

ni.com/daq 12

Figure 1-6: In the Configuration Pane, you can change settings for your channel including, signal type, units, and

sensor configuration.

d. Physically tap on the NI CompactDAQ Demo Box to see the vibration data.

e. When finished, stop the acquisition by pressing the stop button. Close the
Analog Input Task tab.

ni.com/daq 13

Part C Take Your First Measurement with LabVIEW NXG

With LabVIEW NXG, you can acquire, record, and analyze your measurements without
programming, allowing you to make decisions faster. For this exercise, you will acquire
thermocouple data, record signals, and perform a limit test to determine if your temperature
readings kept to a defined range.

1. You will use the NI 9213 and a Measurement Panel to acquire thermocouple data. Create a

Measurement Panel for the NI 9213 to instantly see incoming temperature data by selecting
the 9213 module and clicking Create Analog Input, as in Figure 1-7.

Figure 1-7: Create a Measurement Panel to begin acquiring temperature data.

2. Use the Configuration Pane on the right to modify the channel settings for your
measurement. Change the minimum and maximum values to 20°C and 30°C respectively.

Figure 1-8: After modifying the channel settings in the Configuration Pane, you will be able to view your

temperature.

ni.com/daq 14

3. From the Measurement Panel, you can record your signals to view your data later, either in

LabVIEW NXG or export the information to another program. You can select how you want to
capture data:

a. Record- save continuous data values until you stop recording
b. Record (Timed) – save continuous data values over a defined time period
c. Capture frame – save the current frame of data values

Select to Record (Timed) to save temperature data for five seconds. Touch the thermocouple

while you are recording to vary the temperature.

Figure 1-9: Select to perform a timed recording of the thermocouple data.

4. Once your recording is complete, you can find your data in the Data Pane on the left side of

the workspace. Anytime you record data in LabVIEW NXG, the captured data will be stored in

the Data Pane. Access the data pane by clicking the symbol:

5. Double-click on your recording to open the Data Viewer:

ni.com/daq 15

Figure 1-10: In the Data Viewer, you can use the cursors to focus on a particular segment of the signal or to view

individual data points.

6. In the Data Viewer, you can apply an analysis function to the recorded signal to gain insight

on your data. Under Interactive Analysis in the Configuration Pane on the right-side, select
the More analysis panels… to view the analysis functions that are available.

Figure 1-11: In the Configuration Pane, you can select a variety of analysis functions to interactively apply to your

data.

ni.com/daq 16

7. From the drop-down menu, select Limit testing to open an Analysis Panel to perform a limit
test on your recorded temperature data. With this Analysis Panel, you can set parameters of
the limit test, such as upper and lower limit values, to instantly see the results of your
analysis. Use the cursors on the graph to set your upper and lower limit values.

Figure 1-12: You can view in real-time how the effect of modifying analysis parameters on your data.

8. Save this project as CompactDAQ Project to your desktop by navigating to File >> Save all
and browsing to the Desktop. The hardware configuration and analysis function you used in
this exercise will be used in a later exercise.

<End of Exercise>

Chapter 2 Using Examples to Automate Measurements with LabVIEW NXG

ni.com/daq 18

Goals • Explore the lessons and examples that are included with LabVIEW NXG.

• Run a pre-built example program to automate your first measurement.

• Use configurations from the first exercise to start automating from the beginning

• Experiment with other examples (optional)

Part A Explore Lessons and Examples in LabVIEW NXG

Reduce the time spent taking manual measurements by automating acquiring your data using
LabVIEW NXG and NI-DAQmx. Furthermore, customize your measurements with built-in analysis and
storage functions that allow you to meet your project requirements.

The NI-DAQmx driver allows you to interface with NI data acquisition hardware and also installs
examples that provide you with a proven starting point for creating data acquisition applications. By
utilizing an example program, you can eliminate several sources of errors and save time by utilizing
existing code.

1. To access the examples, open LabVIEW NXG by pressing the Windows key and selecting
LabVIEW NXG. From the welcome scree, select Learn to Program.

2. The Learning tab provides tutorials and examples that get started on how to take
measurements in LabVIEW NXG. Use tutorials to gain knowledge on specific topics, such as
programming basics and generating reports, and use examples to understand how software
integrates with hardware in real-world applications.

Figure 2-1: In the Learning tab, access getting started material, tutorials on learning programming concepts, and examples

on how to interface with your hardware.

3. Today, we will be using an example as a starting point for customizing and automating our
code. To open the NI-DAQmx examples select Examples » Hardware Input and Output » NI-
DAQmx » Programmatic Configuration. In this window, you can find example projects on the
types of measurements you can perform with the NI-DAQmx API.

ni.com/daq 19

Figure 2-2: Select an NI-DAQmx example project for your measurement type.

4. Select NI-DAQmx Analog Input to create a project that contains several examples on how to
perform different types of analog input using LabVIEW NXG.

Figure 2-3: The NI-DAQmx Analog Input example project provides examples for different types of sensor measurements.

5. Workbooks accompany example projects and are documentation that can guide you through
a concept. The workbook will open automatically – you can also open Workbook.wbx in the
left pane to read about the examples that are included in the NI-DAQmx Analog Input project.

ni.com/daq 20

Figure 2-4: A workbook is a media-rich document that accompanies a project to provide documentation for code.

Part B

Run a Pre-Built Example

Now that you are familiar with the NI-DAQmx examples, you can open and run several that use some
of the hardware in your hands-on kit. We will start with a simple voltage measurement.

1. In the NI-DAQmx Analog Input project, open Continuous Input with Voltage Probe.gvi. This
will launch a VI to continuously measure a voltage channel.

2. When the VI launches, the front panel will be displayed. This is the user interface and includes
controls and indicators for interacting with your code. In this example, notice the controls for
selecting the channel, voltage input ranges, timing parameters, and trigger settings.
Additionally, the front panel includes a graph indicator for instantly viewing the data on the
voltage channels.

ni.com/daq 21

Figure 2-5: The front panel is the user interface of a VI and has controls and indicators that allow users to interact with the

code.

3. To view the code behind the scenes of this front panel, select Diagram or use the keyboard
shortcut <Ctrl+E>.

4. Zoom out of the block diagram window (<Ctrl+Mouse Scroll Wheel>) so that you can see
more of the source code.

You will see a series of VIs used to program your DAQ device to acquire a voltage signal.
LabVIEW NXG uses dataflow to pass information along wires to sequential VIs. This
programming paradigm enables you to better program like you think.

Figure 2-6: LabVIEW NXG uses a graphical programming syntax that passes data through the code via wires that connect

nodes.

5. The block diagram is organized into the following sections:

1. Channel Settings – In this section, the DAQmx Create Channel VI configures the

channel on the DAQ device that you intend to use. In this example, you can configure
the range of the device and terminal configuration (single ended versus differential).

ni.com/daq 22

2. Timing Settings – In the Timing Settings section, the DAQmx Timing VI is used to
configure the sample clock on the DAQ device. Using this VI, you can configure the
sample rate, the sample clock source, and the sampling mode you intend you use. In
this example, the default settings use the on-board clock to sample continuously at
1000 Hz.

3. Trigger Settings – In the Trigger Settings section, the DAQmx Start Trigger (Digital

Edge) is used to start acquiring samples on a rising or falling edge of a digital signal.
Depending on the input from the user on the front panel, either the acquisition will be
triggered by a digital signal or analog signal or will automatically begin. The case
structure surrounding this VI will determine which trigger type is used.

4. Acquire Data – In this section, the DAQmx Read VI is called inside a While Loop,
allowing this code to continuously acquire data from the DAQ device until the Stop
button is pressed.

Most data acquisition applications will follow this flow:

Figure 2-7: The most common VIs for each section are shown above.

6. Compare the example program block diagram to the VIs shown in Figure 2-7. All DAQmx
programs will follow the same configure >> Read/Write >> Close prototype, using some or all
of these functions.

7. For more information about the elements on your block diagram and front panel, press
<Ctrl+H> to bring up the Context Help window. By hovering over elements in your code, you
can see brief descriptions and the inputs and outputs of each VI. Required input labels are
shown as bold in the Context Help. For more detailed descriptions, you can press the More
help link. Try hovering over a few elements on your block diagram.

ni.com/daq 23

Figure 2-8: Context Help can provide a quick description of the elements in your front panel or block diagram.

8. Now that you are familiar with the parts of a basic program, you are ready to acquire data

using this example. To do this, switch back to the front panel by selecting Panel or by pressing
Ctrl+E.

9. Change the Physical Channel to Voltage_in/ai0.

Figure 2-9: Use the controls on the front panel to select the channel, timing settings, and logging settings.

10. Change the Sample Rate control to 10000 and press the Run arrow to begin acquiring
data.

Because your signal is connected to the light sensor in the box, you will see the output of the
light sensor. This signal will have some noise from sources in the room but you should be able
to see the effects of placing your hand over the sensor. You are sampling the signal along with
the noise in the room at 10 kHz - what could be some sources of noise in the room around
you? What could you do to get a better idea of what is happening to the signal of interest?

ni.com/daq 24

Figure 2-10: With this program, you are sampling a channel at 10 kHz. Throughout this seminar, you will modify and

customize examples to automate many tasks.

11. Press Stop to stop acquiring data.

12. Exit the program without saving.

Part C Experiment with Other Example Programs (Optional)

Try exploring other example programs by returning to Programmatic Configuration (Help »
Examples) page. Examples that might be useful to look include:

1. NI-DAQmx Analog Input project – Continuous Input with Thermocouple.gvi
Note:

• Be sure to select Temperature/ai0 from the Physical Channel control.

2. NI-DAQmx Analog Input project – Continuous Input with Strain Gage.gvi
Note:

• Be sure to select Strain/ai0 from the Physical Channel control.

• Be sure to select Quarter Bridge I from the Strain Configuration control.

• Be sure to use 3.3 as the Voltage Excitation Value.

3. NI-DAQmx Digital Output project – Continuous Digital Output.gvi
Note:

• Be sure to select Digital_out/port0/line0:7 from the Line(s) control.

• Be sure to select OnboardClock from the Sample Clock Source control.

ni.com/daq 25

4. NI-DAQmx Analog Output project – Continuous (No Regeneration) Output Voltage.gvi
Note:

• Be sure to select Voltage_out/ao1 from the Physical Channel(s) control.

• Be sure to select 1.00 from the Waveform Settings Frequency control.

• Be sure to select 3.00 from the Waveform Settings Amplitude control.

• Be sure to change the Fan Speed Control hardware switch on the Sound and
Vibration Signal Simulator in your demo box to BNC.

• If the fan continues operating after stopping the example program, return to
Explore Your Hardware and reset the NI 9263 by selecting the Voltage_out
module and choosing Reset.

<End of Exercise>

Chapter 3 Temperature Measurement and Logging

ni.com/daq 27

Goals • The first goal is to quickly acquire a set of temperature data by reusing the thermocouple
measurement configuration in an application.

• The second goal is to perform analysis on that data and output a digital warning signal if
the temperature goes above an adjustable warning level.

Part A Part A gives you a chance to see what you’ll complete in this exercise’s final application. You’ll also
explore important elements of the LabVIEW NXG environment.

1. If you have not already done so, launch LabVIEW NXG by navigating to Windows »
LabVIEW NXG. Once you launch LabVIEW NXG, the welcome screen window appears:

Figure 3-1 The LabVIEW NXG welcome screen provides several paths for exploring your hardware, beginning a project,
and accessing learning materials.

The LabVIEW NXG welcome screen appears each time you launch LabVIEW to assist you in creating
new applications or opening existing applications.

ni.com/daq 28

2. Select Launch a Project to open an existing project.

Figure 3-2: Under the Projects tab, you have the option to start a project from scratch or use a template using standard

architecture.

Navigate to C:\Seminars\cDAQ + LabVIEW NXG HO\Exercises\3 - Temperature and select the
Temperature.lvproj project. Once the project opens, you will see three distinct sections of the
LabVIEW NXG editor.

Figure 3-3: The LabVIEW NXG editor.

1. Navigation Pane – Repository of all files, data captures, and debugging tools
associated with a LabVIEW NXG project.

2. Document – Measurement Panel, Analysis Panel, or a VI.
3. Configuration Pane – Modify hardware configurations, analysis parameters,

and objects used in VIs.

ni.com/daq 29

The Navigation Pane includes a Project Viewer which provides a central location for you to include
the different elements of an application including LabVIEW NXG code and other files like Microsoft
Word and Excel documents. You can create folders and sub-folders to organize the files in an
application. Here, a few folders have been created as part of the example.

3. Expand the Solutions folder in the Project Viewer and open the 4 - Write to File
(Solution).gvi by double-clicking on it or right-clicking and selecting Open.
Every LabVIEW NXG application is made of a front panel and a block diagram. The front
panel is the user interface, whereas the block diagram contains the code that controls the
functionality of your application. You can toggle between the two windows by selecting
Panel or Diagram to see the other window. You can also switch between the windows by
pressing Ctrl+E on the keyboard.

Figure 3-4: The Front Panel of a VI allows for a user to interface with the code executing on the block diagram.

Hover the cursor over the different objects on the front panel. Notice that your cursor turns into a
move cursor when above the Temperature Data graph, and turns into a text editor when above a
text field. By default, Automatic Tool Selection will change the cursor depending on what
operations are possible. Also notice that as you move over any object, resizing boxes appear on its
edges. Try resizing a few objects’ sizes.

4. In the menu bar at the top of the window you can control when the application begins to

execute by using the Run button.

Figure 3-5: A broken run arrow (left) indicates that there is an error compiling this application.

You must press the Run button to begin any LabVIEW NXG application, and a broken run arrow tells
you that there are some unresolved errors in the code. Since LabVIEW NXG is continually compiling
code throughout development, you can press the broken Run button at any time and a list of
current errors will appear.

ni.com/daq 30

5. Make sure that your NI CompactDAQ chassis is connected to your PC with a USB cable and
that the modules are plugged into the chassis. Now press the Run button in the LabVIEW
NXG application and watch as the application begins to record temperature data from the
module plugged into the second slot of the CompactDAQ chassis. Contact the instructor if
your application isn’t running as described.

6. Hold the end of the thermocouple and watch the values on the graph rise and fall
accordingly. Change the Upper Limit control to different values and hold the thermocouple
so that it rises above and below the value you’ve entered on the front panel.

As temperature rises and falls around the Alarm Level, look at the NI 9472 module in the
CompactDAQ chassis. One digital output line on this module has been programmed to drive a 5 V
signal whenever temperature is greater than the value of Alarm Level. The module’s LEDs indicate
the status of each digital line. These lines could be connected to other hardware, like a light or
buzzer, or other 5 V device

7. Press the Stop button on the front panel once you are ready to move on.

8. Navigate to the block diagram by selecting Window » Show Block Diagram.

Figure 3-6: The block diagram is the source code of an application.

The graphical programming syntax in LabVIEW NXG uses dataflow to control the flow of an
application. In this case our application does the following:

1.Acquires temperature data using the NI-DAQmx Read function and displays it on a chart.
2.Compares acquired data with Upper and Lower Limits.
3.Outputs 0 V or 5 V to the digital output module based on the comparison in #2.
4.Writes acquired data to file.

9. Select to Split View the front panel and block diagram windows so that both are visible.

ni.com/daq 31

Notice that for every object on the front panel, there is a terminal with the same name on the block
diagram. The functions and wires on the block diagram connect the inputs (“controls”) and outputs
(“indicators”) on the front panel. As you add objects to the front panel in future exercises you’ll see
that terminals are automatically created to be used block diagram.

Additional Steps

10. Learning and Help documentation included in LabVIEW NXG is an effective way to learn
about LabVIEW NXG and answer your programming questions. Select Help » Lessons to
view the lessons available to get started in the LabVIEW NXG

Figure 3-7: In LabVIEW NXG, lessons are available to get acclimated to the environment, learn new programming
concepts, and discover how to begin taking hardware measurements.

11. Within the Learning tab, navigate to Getting Started» Introduction to the Editor to open a
project that provides an overview of the LabVIEW NXG environment. Feel free to explore
and get a feel for the depth of content and how it is organized.

Figure 3-8: The Introduction to the Editor section provides an overview of each section of the environment and how to

use learning materials.

12. Close the Introduction to the Editor project without saving.

ni.com/daq 32

Part B In Part B, we will build the program we explored in Part A. The purpose of this exercise is to use
LabVIEW and NI CompactDAQ to quickly set up a program to acquire temperature data.

1. In the LabVIEW project view, right-click the Exercises folder and select Add Folder. Name it

Hardware Tasks.

2. Right-click the Hardware Tasks folder and select Add New » Analog Input. Once opened,
save the Analog Input task in the Hardware Tasks folder under the name Analog Input.task.

3. To configure a temperature measurement with a thermocouple, configure the Channel

parameters in the configuration pane as shown in Figure 3-9.

Figure 3-9: The Channel tab in the Configuration Pane is used to modify the settings for one channel.

4. Switch to the Task tab in the Configuration Pane. Change the Samples to Read to 100 and
change the Desired Sample Rate to 1kHz, as shown below.

ni.com/daq 33

Figure 3-10: Use the Task tab in the Configuration Pane to modify the timing settings that will be applied to all

channels in a task.

5. Click the Run button. You will see the temperature readings from the thermocouple in test

panel window.

Figure 3-11: Verify hardware settings by view thermocouple data in the Measurement Panel.

ni.com/daq 34

6. Click Stop to stop acquiring data.

The Measurement Panel allows us to acquire data interactively. However, project requirements
evolved and we will need to automate acquiring temperature data or including inline analysis. In
LabVIEW NXG, we can reuse this hardware configuration when building an automated data
acquisition application in a VI.

7. In the Project Viewer, right-click the Exercises folder and select Add New » VI.

8. Save the VI as 2 – Basic Measurement.gvi.

9. Select Diagram to open the block diagram where you will define the code that will
continuously acquire thermocouple data.

10. Select Analog Input.task in the Hardware Tasks folder and drag the file onto the block

diagram.

Figure 3-12: By dragging and dropping the hardware task on the block diagram, code will automatically be generated

that can read thermocouple data.

11. Select Panel to build our user interface on the Front Panel. Notice a notification in the
Unplaced Items tray and expand to see the graph that was generated when the Analog
Input.task was placed onto the Block Diagram.

Figure 3-13: Any time a control or indicator is created on the block diagram, it is put into the Unplaced Item tray until

you are able to place the item on the Front Panel.

ni.com/daq 35

12. Click on the graph and place on the Front Panel. Press the Run button to execute this code.

Figure 3-14: The VI will read thermocouple data for one second.

13. Notice we are not continuously acquiring thermocouple data because we are only calling

the generated NI-DAQmx Read function once in our VI. To acquire data continuously, we
need to place the acquisition code in a while loop.

14. Select the Program Flow icon on the Functions Palette on the right-side of the VI. Left-click

on the While Loop and click and drag diagonally on the block diagram so the NI-DAQmx
code is surrounded.

Figure 3-15: Code inside of the While Loop will continuously execute until a condition is met.

15. Press Ctrl+H to open Context Help to learn more about while loops. While Loops have two
terminals in their bottom right and left corners. The most important of the two is the loop
condition. The conditional terminal is on the lower right side and looks like a stop sign by
default. Since While Loops run until told to stop, we must provide a (Boolean) stop
command so that the loop won’t run indefinitely.

ni.com/daq 36

Notice the broken run arrow. LabVIEW NXG cannot execute an application that contains a
While Loop with an un-wired conditional terminal. For our application, we need to create a
Stop button that the user will press to halt the While Loop and exit the program.

16. Create a Stop button by right-clicking on the conditional terminal. Select to create a control

and a Boolean control will be automatically wired to the conditional terminal.

Figure 3-16: Right-click on any terminal to create a control, constant, or indicator.

17. Return to the Front Panel. Notice that we have an item in the Unplaced Item tray. Click on

the Stop button and place on the Front Panel next to your previously placed graph.

18. Press the Run button. Notice that placing the While Loop has allowed us to continuously
acquire thermocouple data. Touch the thermocouple to view the temperature response.

Figure 3-17: After the While Loop is placed, temperature data will continuously be acquired until the stop button is

pressed on the Front Panel.

19. Stop the VI by pressing the Stop button.

ni.com/daq 37

Additional Steps

LabVIEW NXG provides several tools that can help you develop your applications. The next few
steps will show how to use some of the most important programming assistance tools.

Block Diagram Cleanup

As you program, and especially as you learn how to program in LabVIEW, you are not always
thinking about layout and readability. This can result in a poorly organized block diagram.

The Block Diagram Cleanup is a built-in tool that organizes your code, making it easier for you and
others to understand how your program functions.

20. Press the Clean up diagram button found on the menu bar.

Figure 3-18: Block diagram cleanup automatically organizes your code.

Highlight Execution

21. Press the Highlight Execution button on the menu bar. Notice that the light bulb icon now
appears to be on.

Figure 3-19: Highlight Execution slows your code to let you visualize dataflow.

22. Run your application with Highlight Execution turned on. Press the Run arrow and watch as
your code executes step-by-step. While not always necessary for simple applications, the
Highlight Execution tool is a powerful resource for troubleshooting complex programs and
determining if your code performs as expected.

ni.com/daq 38

Part C The purpose of this exercise is to expand our application to include thresholding using a Limit Test
that will trigger a user-defined alarm.

1. From within the Exercises folder of the open Temperature project, open 3 – Analysis and
Output.gvi. This VI is functionally equivalent to the VI we created in the previous exercise,
but already provides additional space on the block diagram to add additional code.

2. On the block diagram, select the Analog Input.task from the task in constant wired into the
NI-DAQmx Read function. This provides the DAQmx Read function the required hardware
information in order to take an analog input measurement.

3. Navigate in the Functions palette and navigate to Analysis » Signal Processing »

Measurement. Select and place a Limit Testing on the block diagram inside the while loop
to perform analysis inline.

Figure 3-20: Placing the Limit Testing function in the While Loop allows the thermocouple data to be continuously

analyzed.

4. Open the Configuration Panel for the Limit Testing. To learn more about this function, scroll
to the bottom of the panel and select Context Help.

Figure 3-21: Use Context Help to find more information about front panel and block diagram objects.

ni.com/daq 39

5. Wire the output of the NI-DAQmx Read function to the signal input of the Limit Testing
function.

6. For this application, we are going to let the user define the upper and lower limits of the
temperature range. To create controls for the user to define those values, right-click the
upper limit and lower limit terminals of the Limit Test function and select Create Constant.

7. Right-click the test passed? terminal of the Limit Testing function and select Create

Indicator. This will alert the user on the front panel if the temperature remained within the
defined limits.

8. The block diagram should resemble the code below.

Figure 3-22: Our application continuously acquires thermocouple data and processes the data using a Limit Testing

function.

9. Press Panel to return to the front panel of the VI. There should be three items in the
Unplaced Items tray for you to put on the front panel. Caption – mention using the control
button trick

Figure 3-23: To select multiple objects from the Unplaced Items tray, press Control and click at the same time. Then,

place the items on the front panel in the same order of clicking.

10. Run the VI.

ni.com/daq 40

Figure 3-24: The Front Panel will allow the user to define the upper and lower limits of the temperature range.

11. We can modify the appearance of the test passed? indicator using the Configuration Pane.
Select this indicator and expand the Configuration Pane to the right of your window.

12. Change the color of the LED’s True or False value to the colors of your choice.

Figure 3-25: The visual style of a front panel object can be modified in the Configuration Pane.

13. Add text to the LED to let the user know if the temperature passed or failed the limit test.

Figure 3-26: Modify the appearance of front panel objects in the Configuration Pane.

ni.com/daq 41

14. Run the VI by pressing the Run button. Try changing the upper limit and lower limit values

and using your fingers to apply heat to the thermocouple. Note that if you hold the
thermocouple until the temperature exceeds the upper limit value, the test passed? LED
turns on. Next, we will update a digital line to turn on a physical LED, depending on this
temperature threshold status.

15. Stop the VI using the Stop button on the front panel.

16. In the Project Viewer, right-click on the Hardware Tasks folder and select Add New »
Digital Output. Once opened, save the task as Digital Output.task.

17. In the Measurement Panel, use the Channel drop-down box to select

Digital_out/port0/line0.

Figure 3-27: A digital line output allows us to generate data to a single digital line.

18. Run the Digital Output.task. Toggle Line 0 between low and high states and notice that the
LEDs on the NI CompactDAQ demo box and the NI 9472 module change states in response
to your input.

19. Close and save the task. We can use this hardware configuration on our block diagram to

output a digital high when the temperature falls out the defined range.

20. Return to the block diagram of 3-Analysis and Output.gvi.

21. To write to a digital line, we can use the NI-DAQmx Write function. Navigate on the
Functions Palette Hardware Interfaces » NI-DAQmx and select NI-DAQmx Write to place
on the block diagram.

ni.com/daq 42

Figure 3-28: When the NI-DAQmx Write function is placed in a While Loop, it will continuously output a digital signal to

the specified channel.

22. Use the Configuration Panel to modify the settings for this function to generate digital
signal on a single line and channel.

Figure 3-29: This function is configured to write to a single digital line.

23. Select Create constant in the Configuration Pane for the task in terminal. This will create a
task constant wired to the NI-DAQmx Write function. From the task constant drop-down
box, select Digital Output.

Figure 3-30: All hardware tasks that are connected to the project are available to be used in this VI.

24. Wire the output of the Limit Testing VI to the data terminal of the NI-DAQmx Write

function. The NI-DAQmx Write function will change the state on the digital line depending
if the temperature is outside of the user-defined limits.

ni.com/daq 43

Figure 3-31: The Limit Testing result will be output to the digital module.

25. Press the Run button. Notice that the LED bank on the CompactDAQ 9472 module turns on
and off to match test passed? value on the front panel.

26. Save the VI.

Part D The purpose of this exercise is to save our acquired data to file for future processing, which could
include sharing with colleagues, turning into a report, running additional analysis, or all of the
above.

1. The 4 – Analysis and Output.gvi should still be open from the previous exercise. If not,
open it now from the Exercises folder in the Temperature project.

2. Navigate to the Storage folder on the Functions palette and select Write Delimited

Spreadsheet. Place the function inside the While Loop on the block diagram.

3. Use Context Help (CTRL + H) to learn more about how this function writes data to a
measurement file.

Figure 3-32: The Write Delimited Spreadsheet VI is the simplest method of writing data to a file.

4. Right-click the file terminal of the Write Delimited Spreadsheet function to create a
constant.

ni.com/daq 44

5. Find the file path of Measurement Data.txt that is located in the Measurement Data folder
in the Project Viewer by right-clicking on measurement data.txt and selecting Locate item
in Windows Explorer. Copy directory into the file path constant created in the previous
step.

6. Dock the constant to the Write Delimited Spreadsheet function by right-clicking and
selecting dock to node.

Figure 3-33: Docking a constant increases readability of your code by eliminating wire clutter.

7. Wire the data output from NI-DAQmx Read function to the data input of the Write

Delimited Spreadsheet function.

Figure 3-34: This completed application acquires temperature data, outputs a digital signal if the temperature exceeds

a threshold, and saves all of the data to file.

8. Return to the Front Panel and run the VI.

9. Right-click on the Measurement Data.txt file in the Project Viewer to open the file.

ni.com/daq 45

Figure 3-35: The resulting temperature data file that was saved from the completed LabVIEW NXG application.

10. Close the data file, if it is still open.

11. Close the LabVIEW VI, if it is still open.

12. Close the Temperature Project, if it is still open.

<End of Exercise>

ni.com/daq 46

ni.com/daq 47

Chapter 4 Combining Measurements from Light and Temperature

Goals • In this exercise, you will acquire light and temperature signals in the same hardware task
using a Measurement Panel.

• In the second part of this exercise, you will modify code to scale the data and measure the
ambient light in the Measurements Demo Box

Part A Open and Run Our Starting Point

Today’s exercises start with a pre-built single-channel measurement system that measures
temperature data from a thermocouple. We will expand this system to acquire mixed-
measurement data from two sensors (a thermocouple and a solar cell) using two different
modules and write data to a scalable file format.

1. If you have not done so already, launch NI LabVIEW by selecting Windows » LabVIEW
NXG.

2. Open the Temperature and Light project.

a. In the LabVIEW NXG welcome screen, select Launch a Project.

b. Select Browse to C:\Seminars\cDAQ + LabVIEW NXG HO\Exercises\4 –
Temperature and Light.

c. Select and open Temperature and Light.lvproj.

3. Open and run the starting point application.

a. In the Navigation Pane, double-click to select Exercises » 1 – Write to File
(Solution).gvi.

ni.com/daq 48

b. Run the application by clicking the Run arrow () on the front panel.

c. While the application is running, use your finger to warm the thermocouple
attached to the Analog Input 0 (ai0) channel of the NI 9213 module.

d. Verify that the temperature signal on the front panel graph rises and falls
appropriately, and that the LED indicator turns on when the temperature exceeds
26 °C. When the LED indicator turns on, the physical LED on the NI 9472 digital
output module should also light.

e. Stop the VI by selecting the Stop button on the front panel.

Figure 4-1: Use the Run arrow to run the application

4. Press <Ctrl+E> or select Diagram to view the Block Diagram.

This VI was created by dragging and dropping the Temperature.task onto the block
diagram. This method allows you to reuse your existing hardware configurations as a
starting point when automating a measurement task. For further customization and
control over how you acquire your data, use the NI-DAQmx API. This lower level
programming method opens up the capabilities of the device.

ni.com/daq 49

Figure 4-2: Dragging and dropping the hardware configuration is a quick method to begin to automate your data

acquisition application.

5. Close the VI.

Part B Use the Low-Level NI-DAQmx API

Reusing the measurement task is a quick way to begin automating your data acquisition; however,
to have more control over your task use the NI-DAQmx VI. This exercise will create our
measurement task programmatically and accomplish the equivalent measurements using the
more flexible lower-level NI-DAQmx VIs.

1. In the LabVIEW Project, double-click to select Exercises » 2 – Use the NI-DAQmx VIs.gvi.

2. Examine the lower-level NI-DAQmx code.

a. Select Diagram or press <Ctrl+E> to examine the block diagram.

b. If it is not already open, select Help » Show Context Help or press <Ctrl+H> to
turn on LabVIEW Context Help.

c. Navigate to the left-most section of code on the diagram,

ni.com/daq 50

Figure 4-3: The lower-level NI-DAQmx API follows a logical pattern.

d. One at a time, hover over the VIs on the block diagram and examine their
functionality as described in the Context Help window.

Figure 4-4: The Context Help dialog gives you detailed information about every VI, as well as its expected inputs and

output values.

Notice that the logical flow of the NI-DAQmx API begins by configuring an analog input
channel that corresponds to a physical channel of measurement.

Just before the while loop, the acquisition is started. Within the loop, samples are read
from the NI-DAQmx buffer repeatedly until the user stops the loop, at which point the
acquisition setup is cleared from memory.

3. Add Timing configuration to the lower-level NI-DAQmx code.

e. Navigate to Hardware Interfaces » NI-DAQmx and select DAQmx Timing.gvi.

ni.com/daq 51

Figure 4-5: The DAQmx palette houses all the data acquisition functions built available with the NI-DAQmx driver.

f. Left-click to place the DAQmx Timing.gvi between the DAQmx Create Channel VI

and the DAQmx Start Task VI.

Figure 4-6: The NI-DAQmx Timing VI configures the timing for hardware-timed data acquisition operations.

g. Use the Configuration Pane to the right to modify the DAQmx Timing VI function
configuration. Select Sample Clock as the timing type for this VI.

ni.com/daq 52

Figure 4-7: Use the Configuration Pane to define the inputs for the NI-DAQmx Timing VI.

h. Select Create Constant for the sample mode in the configuration pane. This will

place a constant on the block diagram wired into the sample mode input. Click
the dropdown menu to change the value to Continuous Samples.

Figure 4-8: After defining the sample mode in the Configuration Pane, a constant is automatically connected to the

Timing VI.

i. Mouse over the left side of the DAQmx Timing function to see the input

terminals. Right-click on the Rate input and select Create » Constant from the
right-click context menu. Leave the default rate value of 1000 Hz.

ni.com/daq 53

Figure 4-9: By right-clicking on a VI's terminal, you have the option to have the input be a constant or a control that is
defined by the user on the front panel.

j. Right-click on the Samples per Channel input and select Create » Constant.

k. Double-click the Samples per Channel constant and change the value to 100.

Figure 4-10: The samples per channel equals the number of samples read when the function executes.

l. Click on the output of the Task Out output of the DAQmx Create Channel.gvi,

then click again on the Task/Channels In input of the DAQmx Timing.gvi. This will
connect a wire between the two nodes.

m. Similarly, wire the Task Out output of the DAQmx Timing.gvi to the

Task/Channels In input of the DAQmx Start Task.gvi.

Figure 4-11: Complete the configuration of the DAQmx Timing VI as shown.

4. Run the VI.

n. Using the Run arrow (), run the VI and ensure that it behaves with the lower-
level NI-DAQmx VIs exactly as it did when we reused the hardware configuration
on the Measurement Panel.

o. Stop the VI by selecting the Stop button on the front panel.

5. Select File » Save to save your changes.

6. Keep the VI open for the next exercise.

Part C Use an NI-DAQmx Task

ni.com/daq 54

The lower-level NI-DAQmx VIs offer the greatest flexibility in programming NI LabVIEW NXG data
acquisition applications. With the lower-level VIs, you can programmatically control the lowest
level of details to create everything from simple acquisition or generation applications to those
with multiple simultaneous channels using complex timing and triggering.

As a compromise between dragging and dropping a measurement task on the block diagram
(which offers maximum ease of use while sacrificing some relative flexibility) and the lower-level
NI-DAQmx VIs (which offer maximum flexibility while sacrificing some relative ease of use), the NI-
DAQmx Task combines configuration-based setup with low-level control – a “best of both worlds”
approach that works well for scalable applications.

1. Re-save the VI for use in Exercise 3.

a. If it isn’t already open, within the Light Sensor Project, double-click to select
Exercises » 2 – Use the NI-DAQmx VIs.gvi.

b. Right-click on 2 – NI-DAQmx VIs.gvi and select Duplicate

Figure 4-12: Duplicating the VI gives you code as a starting point when completing this exercise.

c. Rename the duplicated VI as 3 – Use an NI-DAQmx Task.gvi.

2. Right-click on Temperature.task in the Navigation Pane and select Duplicate. Rename this
task Temperature and Light

ni.com/daq 55

a. Select Create New Input. This will allow you to create another analog input
measurement in this task.

Figure 4-13: Include new inputs to this task by selecting additional hardware channels.

b. Select Voltage as the new Signal Type.

c. Choose Voltage_in and select the ai0 channel.

3. Configure the Light Sensor channel in the task to acquire data from the light sensor

attached to the box that holds the NI CompactDAQ chassis.

a. In the configuration pane, rename the channel Light Sensor.

b. Because the voltage readings are small, change the minimum value to 0 mV and
the maximum value to 100 mV. Run the task to see temperature and light data on
the same graph.

Figure 4-14: In the Measurement Panel, you can view both temperature and light signals on one graph.

ni.com/daq 56

4. Use the Temperature and Light task on the Block Diagram

a. In the 3 – Use a NI-DAQmx Task.gvi, click and drag to highlight all VIs and input
parameters to the left of the DAQmx Start Task.gvi.

b. Using your keyboard, press Delete to delete the code to the left of the DAQmx
Start Task.gvi.

Figure 4-15: This section of code will be replaced using the configuration from the Temperature and Light.task.

c. Press <Ctrl+B> to clear any broken wires resulting from the removal of the

configuration code.

d. Navigate on the Functions Palette to Hardware Interfaces » NI-DAQmx and select
DAQmx Task Name Constant.

Figure 4-16: Select the NI-DAQmx Task Name Constant from the DAQmx functions palette.

e. Left-click to place the DAQmx Task Name Constant to the left of the DAQmx Start

Task VI.

ni.com/daq 57

Figure 4-17: All the hardware tasks saved in the project are available to use.

f. Using the drop-down, select the Temperature and Light task that you configured

in the Measurement Panel.

5. Set-up a Custom NI-DAQmx Scale for the Light Sensor.

In this section, we will scale our solar cell data to make it easier to view alongside
our temperature data. Recall that our task includes a thermocouple and a solar
cell – we will be applying this scaling only to the solar cell, by using a DAQmx Task
Property Node.

The specifications for the solar cell sensor dictate that it outputs a voltage value
between 0 Volts (no light present) and .5 Volts (full sunlight). Light in the seminar
room will output a tiny voltage value, so our scale will map it onto larger voltage
values. Though the thermocouple also outputs values in this (small) voltage range,
the thermocouple channel type in the task automatically maps the thermocouple
output values to a degree Celsius (°C) scale between 0 and 100.

Applying our custom scale to the solar cell measurements will map the solar
values into the same range of values being represented by the thermocouple
channel at approximately room temperature. We will set the lower bound (no
light) at 20 and our upper bound at 40.

a. Navigate on the Functions Palette to Hardware Interfaces » NI-DAQmx »
Advanced » Scale Setup and select Create Scale.

Figure 4-18: Select the NI-DAQmx Create Scale VI in the NI-DAQmx functions palette.

b. Left-click on the DAQmx Create Scale to drop the VI under the Task Constant.

ni.com/daq 58

Figure 4-19: Use the DAQmx Create Scale function to define the parameters of the scale that will be applied to the

signal acquired from the Light Sensor channel.

c. In the Configuration Pane, select the scale type to Map Ranges.

d. Under Terminals, assign the following values for each parameter. Notice constants
will be created for each of the inputs for the Create Scale VI.

Figure 4-20: Match the settings displayed in the Configuration Pane for the Create Scale VI.

e. To clean-up the Block Diagram, select Dock to dock your constants and limit the

number of wires coming out of the Create Scale VI.

ni.com/daq 59

Figure 4-21: Docking constants cleans-up the block diagram. To view the value of each constant, hover over each

docked constant.

f. Navigate on the Functions Palette to Hardware Interfaces » NI-DAQmx and select

Task Properties. Left-click to place the NI-DAQmx Task Property node on the Block
Diagram.

Figure 4-22: A property node is used to modify properties of the DAQmx task and setting to write will allow you to

apply the custom scale.

g. In the first drop-down menu of the NI-DAQmx Task Property node, select Channel.

In the second drop-down menu, select Wire on Diagram.

h. Next, expand the DAQmx Task properties node by three items.

Figure 4-23: You can write to or read from multiple properties in one node.

i. Click the last drop-down menu (AI.MeasType) and navigate to Analog Input >
Voltage > Units. Right-click on the task and select Set All to Write. Your property
node should look like the one below:

ni.com/daq 60

Figure 4-24: Setting all to write will enable you to change the properties of the Temperature and Light task.

j. Click on the DAQmx Task property node. In the configuration pane, set AI.Max to

40 and AI.Min to 20. Click on ActiveChans and type Light Sensor. This is the
channel in the Temperature and Light.task we will apply the scale to.

k. Right click on the input terminal for AI.Voltage.Units and create a constant ().
This creates a dropdown menu called an Enum. Click on the dropdown menu and
select From Custom Scale.

l. From the DAQmx Create Scale VI, wire the output of scale out to the

AI.Custom.ScaleName input of the DAQmx Task Property node and wire the
output of error out to the Error in input of the DAQmx Task Property node.

m. Wire the task output of the DAQmx Task Property node to the task input of the

DAQmx Start Task VI and wire the error out from the DAQmx Task Property node
to the error in.

Figure 4-25: The completed code to apply the custom scale to the light sensor channel.

6. Run the VI.

a. Using the Run arrow (), run the VI. Note that you can see both thermocouple
and light sensor data on one graph.

b. While the application is running, use your finger to warm the thermocouple and
verify that the temperature rises appropriately.

c. While the application is running, use your hand to shield the solar cell sensor from

light and verify that the voltage falls appropriately. Alternatively, you can provide

ni.com/daq 61

additional light by using an available cell phone and verifying that the voltage rises
appropriately.

d. Stop the VI by selecting the Stop button on the front panel.

7. Close the VI.

8. If time remains, continue to modify your VI and expand its functionality. Try customizing

your graph axes and data sets. Try creating a new Test Passed? LED to respond to your
solar cell measurements.

ni.com/daq 63

Chapter 5 Strain Gage Measurement with User LED Feedback

ni.com/daq 64

Goals • In the first part of this exercise, you will write a program to acquire data from a strain gage in a
quarter bridge configuration.

• For the second part, you will add code to indicate approximate strain with LED indicators

• Key concepts include
o Strain measurement
o Using the NI-DAQmx API
o Using SubVIs
o Combining measurement and control tasks
o Writing to file when an event occurs

Part A Measuring Data from a Strain Gage

Acquiring strain data is one of the most common tasks in any physical measurement system. Strain is
measured using a strain gage, which is a small resistive element that changes resistance when deflected.
Because the resistance changes proportionally with deflection, you could excite the strain gage with a
current and measure the voltage change to calculate the change in resistance. However, because the
change in resistance is so small, a better solution is to use a Wheatstone bridge configuration to
measure the small changes in resistance.

Figure 5-1 A Wheatstone Bridge enables precise measurement of small resistance changes.

In a Wheatstone Bridge, four resistors are used in the configuration seen in Figure 5-1 and excited using
a voltage source Vex. If all four resistors are equal, the bridge is said to be balanced and the voltage
measured at Vo will be equal to zero. When using a Wheatstone bridge to measure strain, the strain
gage will have a nominal resistance equal to the other elements of the bridge, in the case of your
hardware configuration for this seminar, 350 Ohms. As the strain gage flexes, the resistance changes
and, consequently, Vo. Knowing this, we can derive the proportional change, arriving at the following
equation:

Figure 5-2 In a quarter bridge configuration, we can calculate strain based on the voltage change.

ni.com/daq 65

In this exercise, you will use a strain gage in the quarter bridge configuration, meaning that only one of
the gages is active.

Strain gages are particularly delicate. Before you start this exercise, confirm that the strain gage is
properly connected and that you can acquire basic data from the channel connected to the strain gage.

Note: Steps 1-14 below test the function of your Strain Gauge. If you have already configured and tested
your hardware, skip to step 15.

1. On the NI CompactDAQ chassis, ensure that the green Power and amber Ready LEDs are lit to

confirm that the chassis is connected over USB and powered on.

2. Examine the wiring into the NI 9236 module to confirm that the strain gage is securely connected to
the spring terminals.

3. If it isn’t already open, launch LabVIEW NXG by selecting Windows » LabVIEW NXG

4. Return to the home screen if needed, and click on Use Your Hardware.

Figure 5-3: Click Use Your Hardware to configure a simple measurement for checking signal connectivity.

5. In the SystemDesigner, find your CompactDAQ Chassis.

ni.com/daq 66

Figure 5-4: Display of all connected hardware with appropriate drivers installed.

6. Click on the C Series Strain/Bridge Input Module named Strain in your CompactDAQ chassis. The

configuration pane to the right of the screen will populate with relevant information.

ni.com/daq 67

Figure 5-5: C Series module configuration window

7. Click Create Analog Input to begin acquiring a strain measurement in a measurement panel.

8. In the configuration pane on the right, switch to the Task page at the top, deselect Auto Managed

Timing, and change the Desired Sample Rate to 1 kHz.

9. Data should automatically be acquired and displayed on the graph provided. The graph should look
like Figure 5-6.

Figure 5-6: The configured measurement is used to confirm electrical connections and quickly acquire data.

10. Press down on the strain bar and ensure that the

graph reacts to your input. If you detect no
noticeable change, please alert your instructor at
this time.

11. Once you have confirmed that the strain gage is

working, click the stop icon () to stop acquisition.

12. You can quickly capture measurement data using
the measurement panels in LabVIEW NXG. To do so:

a) Click Record to begin acquiring data
b) Gently press down on the strain bar in your

demo box to observe a change in measured strain
c) Click stop recording .

NOTE: Every time you set up a new

measurement or measurement system, it

is a good idea to confirm that the wiring

is correct and that all software is

installed and working correctly. LabVIEW

NXG’s interactive measurements pane

provides the insight into your system and

setup to help you eliminate mistakes

early in your development process.

ni.com/daq 68

13. The Navigation Pane to the left of your screen will

switch to the Captured Data view and display your
saved data file. Explore the captured data by
double clicking on the data file, named Recording 1
by default. Take a minute to familiarize yourself
with the functionality available while viewing
captured data.

a) Browse the waveform data using your mouse to view individual data points.

b) Adjust the cursors above the waveform chart to highlight points of interest.
c) Use Ctrl+Mouse Scroll Wheel to zoom in to a smaller section of the recorded data. Notice

that the macro view at the top of the data viewer window shows the area you are currently
viewing and allows you to further adjust as needed.

d) Right click the graph to capture a new data set equal to whatever is currently visible, if
desired.

14. When finished, close LabVIEW NXG and discard changes if prompted.

15. Navigate to C:\Seminars\cDAQ + LabVIEW NXG HO\Exercises\5 – Strain.

16. Double-click Strain Gage Exploration.lvproj to open the strain gage project. You should see the

following screen:

NOTE: You can see a reminder of what

panes are currently visible by clicking on

the question mark icon at the top

right of any window.

ni.com/daq 69

Figure 5-7 Use LabVIEW Projects to organize all your VIs.

With the LabVIEW Project like the one you’ve just opened; you can easily organize and visualize
all the files that are important to your application. In this project, the folders like Exercises,
Solutions, and Support VIs have been populated with the files within them. The file structure of
your project should mirror the file structure in Windows Explorer.

17. Start by opening the solution. In the Navigation Pane, expand Strain Gage Exploration.lvproject »
Solutions and double-click Strain_w_User_Feedback_Solution.gvi.

18. Click the Run arrow at the top-left of the front panel pane, and then push down on the strain bar
– be careful not to bend the bar. Notice that the LEDs signal the amount of strain experienced on the
strain bar.

19. Close the VI. If prompted, do not save changes.

20. To start this exercise, use the Navigation Pane to

navigate to the Exercises folder and double-click
Strain_w_User_Feedback_Exercise.gvi. The front
panel has already been created for you.

Throughout this exercise, you will work to complete
this VI to acquire data from the strain gage and
illuminate a series of LEDs to indicate the strain level
to a user.

NOTE: When starting a new program,

beginning with a Front Panel design is a

good way to organize your thoughts

around the inputs and outputs that you

expect. Once you understand how you

want a user to interact with the code,

then you can begin wiring the block

diagram to support that functionality.

ni.com/daq 70

Figure 5-8 The Panel is the user interface for your program and contains all the controls and indicators to interact with your

code.

Notice that the Run arrow in the top left corner is broken . This is because the code contains
errors, or in this case, is not in a running state. LabVIEW NXG continuously compiles in the
editing environment, so you will always know if your code can run.

Pressing the run arrow when it is broken will show a list of errors. Try pressing the run arrow to
view some of the errors with our current code. If you double-click on one of the errors, LabVIEW
NXG will even highlight the section of code containing the error.

21. Close the Error Dialog and select Diagram at the top of the VI. The keyboard shortcut for this is
Ctrl+E. Use this shortcut to toggle back and forth between the Front Panel and Block Diagram.
Alternatively, you can use the Split view to display both the Panel and Diagram at the same time.
When the Block Diagram opens, you will see the following code:

ni.com/daq 71

Figure 5-9 The Block Diagram does the work of your program. This is where you will write the code to control the Front Panel.

This Block Diagram includes some basic elements that have been provided for you. Each
element on the Front Panel has a corresponding terminal on the Block Diagram. To find the
corresponding Front Panel element, you can double-click the element on the block diagram to
highlight it. As you add new elements to the front panel, their corresponding block diagram
element will be held in the Unplaced Items section of the Palette (arrow in Figure 5-10).

Figure 5-10 New elements are stored in the Unplaced Items palette for easy access as you add functionality to your

programs.

Try double-clicking on the Strain Chart icon. Then double-click on the same item on the Front
Panel. This is a convenient way to find items on either the Front Panel or Block Diagram.

ni.com/daq 72

The grey text boxes are annotations. You can
create notes on the block diagram simply by
double-clicking in any blank space. It is always a
good idea to properly document your code so that
you or someone else can understand what is going
on.

22. Now that you are familiar with the elements of the program, you can start building the code to
acquire strain data. To start, make sure that the Block Diagram is visible.

23. For this exercise, a large part of the coding will come from the DAQmx palette. To access this palette

click the Hardware Interfaces menu of palette, then select NI-DAQmx.

24. Click on the double arrow to keep this palette visible (arrow in Figure 5-11).

Figure 5-11 The DAQmx palette includes all the required VIs for communicating with your NI CompactDAQ chassis.

REMEMBER: you can zoom in and out

on the Front Panel and Block Diagram

by holding the Ctrl key and scrolling the

mouse scroll wheel.

ni.com/daq 73

Figure 5-12 Pinning a palette enables you to click elsewhere in your code with the palette still visible.

25. To start, drag the NI-DAQmx Create Virtual Channel (arrow in Figure 5-12) and place it in the

position shown in Figure 5-13.

ni.com/daq 74

Figure 5-13 The DAQmx Create Channel VI establishes communication with your DAQ device.

26. When this VI is placed on the diagram, a configuration menu opens in the right-hand configuration

pane to specify the desired Channel and Measurement Type as shown in Figure 5-13. By default, the
VI is configured to create a simple analog input voltage. To configure this for strain, click on the
Measurement Type drop down arrow and select Strain. The Sensor Type field that appears should
be configured for Strain Gage by default.

If you make an incorrect selection, or otherwise need
to adjust the configuration of this VI, you can do so
by selecting the VI on the Block Diagram to view all
available configuration settings in the Configuration
Pane to the right.

NOTE: You can see a reminder of what

panes are currently visible by clicking on

the question mark icon at the top

right of any window.

ni.com/daq 75

Figure 5-14 The DAQmx Create Channel VI is called polymorphic because it changes to adapt to the selected measurement

type. The Configuration of polymorphic VIs can be changed in the configuration pane.

27. To find out more about this VI, bring up the Context Help by pressing Ctrl+H.

The Context Help gives you a brief description of anything you hover over with your cursor.
Hover over the DAQmx Create Channel VI to see the inputs and outputs of the VI.

For a strain channel, we need to provide the channels you are measuring and the strain gage
information. To provide these inputs, wire up the VI as shown in Figure 5-15 by clicking on the
output of each block diagram node and then clicking again on the target input terminal of the
DAQmx Create Channel VI.

ni.com/daq 76

Figure 5-15 Wire up the inputs to the DAQmx Create Channel VI.

28. Drag the following VIs from the DAQmx palette and place them as shown in Figure 5-16.

a) DAQmx Timing
b) DAQmx Start Task
c) DAQmx Read
d) DAQmx Stop Task
e) DAQmx Clear Task

Figure 5-16 The flow of DAQmx code almost always follows the same pattern.

If you recall from the example programs you examined in the earlier exercises, the DAQmx
pattern almost always follows the same flow. A channel is created, settings like timing and
triggering are configured, the task is started, the channel is read then the task is stopped and the
channel is cleared.

29. The DAQmx Timing VI configures the sample rate, sample mode, and clock source for your task. You
are going to be sampling continuously, using the on-board clock source. Wire the DAQmx Timing VI
as follows:

ni.com/daq 77

Figure 5-17 The DAQmx Timing VI configures your clock parameters.

30. The DAQmx Start Task VI transitions the code to the running state. Once your code is past this VI,
you are ready to read or write data. To learn more about this VI, make sure the Context Help is still
visible Ctrl+H and hover over the DAQmx Start VI.

31. After the task is started, the DAQmx Read VI pulls data off the DAQ device buffer. Like the DAQmx

Create Channel VI, the DAQmx Read VI is polymorphic. To configure this VI to read a data from the
strain gage, click the VI and observe the settings available in the Configuration Pane. Set the
function configuration settings as shown in Figure 5-18.

Figure 5-18 Select a single channel of waveform measurement to read from the supplied strain gage.

32. Wire the output of the DAQmx Read VI to the Strain Chart. This will enable a user to visualize the
data on the front panel.

33. The DAQmx Stop VI and DAQmx Clear VI ensure that your program properly closes communication

and frees up the hardware before stopping the code. Again, to learn more about these VIs, hover
over them with the Context Help visible.

ni.com/daq 78

34. Wire the purple task and yellow error wires through the code as shown in Figure 5-19. This will pass
the task values and any errors that may arise through the code.

Figure 5-19 To finish the strain acquisition code, wire the task and error wires through the code.

35. Wire the error wire from the DAQmx Read VI to

the input of the OR Node. This VI will OR the
inputs to stopping the While Loop from
executing. The code you just wrote will stop if an
error occurs or a user stops presses the stop
button.

Figure 5-20 The Compound Arithmetic ORs the inputs, stopping
the While Loop if the code has an error or the user presses stop.

36. Once you wire the error wire to the OR node, your code
should be ready to run. Check to see that the Run Arrow is

intact .

37. Press Ctrl+E to toggle to the Front Panel.

38. Press the drop-down arrow on the DAQmx Physical Channel to select the correct channel. In this
exercise, the strain gage should be attached to channel 0 of the NI 9236. If you correctly renamed
your modules in an earlier exercise, select Strain/ai0.

NOTE: Because LabVIEW uses dataflow

to enforce order of execution, you can

visualize the data traveling across each of

the wires, from one VI to the next. Each

VI will only execute once all the wired

inputs have been accounted for.

Wiring the error wire thought the code

ensures that any errors in the code will

pass through the code and be reported

to the user.

NOTE: To create a branch from an

existing wire, right click on the wire and

select Create branch, or click a

completed wire while holding Ctrl.

ni.com/daq 79

Figure 5-21 Select the channel that your strain gage is attached to.

39. Set the Strain Sample Rate to 10000 Hz and the Samples Per Channel to 1000, like in Figure 5-22.

Figure 5-22 A good rule of thumb is to set the number of samples to 1/10th of the sample rate.

The sample rate dictates how fast your DAQ device samples the selected channel. The Samples
Per Channel dictates how much data is pulled from the DAQ buffer each time the loop runs. In
the example above, DAQmx Read will wait until there are 1000 samples on the buffer before it
pulls them from the DAQ device. This translates to an update every 1/10th of a second. If you
change the Samples Per Channel to 10000, your code will update once every second. If you get
buffer overflow errors, it usually means that your loop is not executing fast enough to pull data

ni.com/daq 80

off the DAQ device before the buffer is full. Try increasing the number of Samples Per Channel if
this is the case. In some cases, you may need to split your code into parallel loops. For more
information about this type of architecture, search Producer Consumer in the in-product help
search at the top right of the window.

40. Press the Run arrow. Notice that when you gently press on the strain gage, you can see the
inflections on the waveform chart.

Figure 5-23 You have created a program to visualize strain gage data. This data can be analyzed, saved to file or used to

control an output.

41. Press Stop.

42. Save this VI, as you will use it in the next part of the exercise.

43. To finish out this portion of the exercise, return to the home screen of LabVIEW NXG by selecting the

Home Icon at the top left of the window. Then, enter the Learning section by clicking Learning at
the top right of the home screen.

44. Navigate to Examples » Hardware Input and Output » NI-DAQmx » Programmatic Configuration »

NI-DAQmx Analog Input. Save the file with any file name.

ni.com/daq 81

45. This example is a project with a variety of pre-built analog input applications for different
measurement types. You can see all the included VIs in the Navigation Pane, as shown in Figure
5-24.

Figure 5-24 Example programs are pre-built and ready to run. They serve as a great starting point for your measurement

applications.

46. Double-click on the Continuous Input with Strain Gage.gvi to open the Front Panel.

47. Change the DAQmx Physical Channel to Strain/ai0 (or the channel your strain gage is connected to),
the Strain Configuration to Quarter Bridge I and the Voltage Excitation Value to 3.3. See Figure 5-25
for reference.

NOTE: Examples and Lessons in LabVIEW NXG often include Workbooks that will open when the

project is opened. Workbooks will explain the content of each lesson in an interactive, step-by-step

guide.

ni.com/daq 82

Figure 5-25 The DAQmx examples are built to give you a solid starting point for your programs. Use them as a starting point.

48. Press the run button. The graph should react to you pressing on the strain bar just like in your code.

Press Stop.

49. Press Ctrl+E to open the block diagram. This code includes many more settings specific to strain
gage measurements than the code you have just built, but it still follows the same exact DAQmx
flow. Additionally, this code includes triggering functionality. This could easily be added to your
code by adding the appropriate DAQmx Trigger VI.

50. Close this example VI. When prompted, do not save your changes.

Part B Controlling the Colored LEDs for User Feedback

For this part of the exercise, you will add to the code built in Part A.

Oftentimes, users need immediate feedback from a measurement system and a computer monitor may
not be practical for applications like embedded measurement systems, industrial monitoring, or process
control. A common way to alert an operator to the condition of the test is to use signal LEDs. For this
next part of the exercise you will use your code to alert a user to the strain level on the aluminum bar.

Before you start this exercise, confirm that the LEDs are properly connected and you are able control
them in Measurement Panels.

1. If needed, re-open Strain Gage Exploration.lvproj from C:\Seminars\cDAQ + LabVIEW NXG
HO\Exercises\5 – Strain.

ni.com/daq 83

2. Click the Add File icon in the tab toolbar at the top of the window, or navigate to File » New,
and select Digital Output, as in Figure 5-26. This will create a new digital output Measurement
Panel.

Figure 5-26 Starting with Measurement Panels ensures that your sensors are working and you will not have hardware

problems.

3. Click Create New Output, check Select All and click OK. This will add all available lines to the
Measurement Panel:

Figure 5-27 With the Digital Output Measurement Panel, you can control the digital output lines to ensure they are operating

properly.

ni.com/daq 84

4. Press Run .

5. For this test, select all lines using Shift+Click. Once selected, the line state can be changed in the
Channel tab of the Configuration Pane. Set all lines to High.

6. You should see all the LEDs on your demo box light up. Notice that the LEDs on the CompactDAQ
NI 9474 module also light up. You can control each LED individually, but for testing operability, it
is not essential.

7. Press Stop and close the Measurement Panel. Discard Changes.

8. Open your copy of Strain_w_User_Feedback_Exercise.gvi from Exercises folder of the Project
Files view in the Navigation pane.

9. Press Ctrl+E to open the Block Diagram.

In this part of the exercise, you will add code to control the LEDs proportionally to the strain
experienced by the aluminum bar. To add this code, you will perform many of the same steps
used in the strain acquisition, but this time, you are writing data, rather than reading. You
should notice some overlap in the steps performed.

10. From the Hardware Interfaces menu of the palette, drag the NI-DAQmx Create Channel (arrow
in Error! Reference source not found.) and place it in the position shown in Figure 5-28.

ni.com/daq 85

Figure 5-28 The digital output code will run parallel to the strain task.

11. When this VI is placed on the diagram, a configuration menu opens to specify the desired
Channel and Measurement Type as shown in Figure 5-13. By default, the VI is configured to
create a simple analog input voltage. To configure this for digital output, click on the
Measurement Type drop down arrow and select Digital Output.

If you make an incorrect selection, or otherwise need to adjust the configuration of this VI, you
can do so by selecting the VI on the Block Diagram to view all available configuration settings in
the Configuration Pane to the right.

12. Wire the LED Channels control to the Physical Channels input of the VI. Press Ctrl+H and hover

over the VI if you need a reminder where this input is.

13. Drag the following VIs from the DAQmx palette and place them as shown in Figure 5-29.
a) DAQmx Start Task
b) DAQmx Write
c) DAQmx Stop Task
d) DAQmx Clear Task

ni.com/daq 86

Figure 5-29 These VIs should look familiar – nearly all DAQ programs will follow this pattern.

14. Click on the new DAQmx Write VI and change the Function Configuration in the Item tab of the

Configuration Pane as shown in Figure 5-30.

Figure 5-30 You can write an array to the digital lines on the NI 9472 using the DAQmx Write VI.

15. Wire the task and error wires through each of the DAQmx VIs like in Figure 5-31.

Figure 5-31 Wiring the task and error wires through dictates the flow of your code.

ni.com/daq 87

16. To properly handle the errors, you will need to ensure that the while loop stops if your digital
code has an error. To do this, start by expanding the OR function to accept three inputs. Hover
over the VI and drag the handle up to expose another input.

Figure 5-32 Expanding the OR for additional inputs.

17. Wire the error wire from the output of the DAQmx Write to the new compound OR input.

Figure 5-33 The Compound OR now accounts for all the errors inside the While

Loop.

18. At the end of your code, you will need to combine all the error wires, alerting the user of any
errors in the code. The Retain First Error function merges multiple error clusters into a single
error, looking for errors from top to bottom beginning with the first error in parameter.

Figure 5-34 Combine all the error wires in your code with the Retain First Error VI.

19. Wire the error wire from the output of the bottom DAQmx Clear Task VI into the second input of

the Retain First Error function. Your code should look like Figure 5-35.

Figure 5-35 All your error wires are combines so the Simple Error Handler can display the errors to the user.

NOTE: To create a branch

from an existing wire, click a

completed wire while holding

Ctrl , or right click on the wire

and select Create branch.

ni.com/daq 88

Now that you have the code for writing the data to the digital outputs, you will need to create
the code to translate the analog data from the strain gage to a digital level. Luckily, that code
has already been created for you as a subVI. To add the subVI, view the Project Files within the
Navigation Pane. Under the Support Vis folder, find the LED_Scaled_Output VI. Drag and drop
this VI on to your block diagram as shown in Figure 5-36.

Figure 5-36 The LED_Scaled_Output VI is a subVI to scale the strain input to an LED output.

20. Organizing your code into subVIs is a way to make your code more manageable and scalable. To

examine the contents of the subVI, just double-click the icon to open the subVI’s front panel.
Take a minute to examine the contents of the subVI.

21. Close the subVI.

22. Wire the call to the subVI like in Figure 5-37.

ni.com/daq 89

Figure 5-37 This subVI outputs a Boolean array that can then be output by the DAQmx Write.

23. Your code is ready to run. Switch to the Front Panel and press the Run button. You should notice
that the LEDs light proportionally to the amount of force applied to the strain gage.

If the scaling seems off. Press on the bar and take note of the highest and lowest values on the
graph. Stop the VI, adjust the Range High and Range Low values to match the range of the strain.
Restart the VI and you should see the LEDs reacting to pressure on the strain bar.

24. If you watch the front panel and the LEDs, they should be reversed in how they are displayed.
The physical LEDs and the front panel indicator can be matched in code easily. To swap the
order of the front panel indicator, click on the wire shown in Figure 5-38 and press delete.

Figure 5-38 Delete the wire between the LED subVI and the LED indicator.

25. To switch the order of a 1D array, use the Reverse 1D Array function. To quickly find and place a
function that you know the name of, use the quick drop utility. Press Ctrl+Space to open the
quick drop search, and type Reverse 1D Array.

ni.com/daq 90

Figure 5-39 The quick drop is the fastest way to find a function in the palette by name.

26. Place the VI in between the LED out subVI and the LED out indicator and wire it up like in .

Figure 5-40 Use Reverse 1D Array to swap the order that the Boolean array is displayed.

<End of Exercise>

ni.com/daq 92

Chapter 6 Audio Equalizer – Audio Input and Output with Analysis

ni.com/daq 93

Exercise 1: Acquire and Log Audio Signal

Note: This exercise assumes that you have already installed all required software and configured all hardware as

outlined in earlier sections. If you have not, please refer back to the appropriate section to do so.

Goals • Continuously acquire 40000 data point arrays from the audio source connected to the NI
9215 (or similar Analog Input) module.

• Add data logging to the DAQmx task.

 1. Launch LabVIEW NXG by navigating to Windows » LabVIEW NXG.

2. Open the provided LabVIEW Project by selecting the File » Open Project » Audio Equalizer
Exploration.lvproject from C:\Seminars\cDAQ + LabVIEW NXG HO\Exercises\Audio\ option from
the Getting Started Window.

3. Within the project files view of the navigation pane, you have been provided with a few

LabVIEW Virtual Instruments (VIs).

4. Open Audio Exercise.gvi by double-clicking on it in the project files pane.

5. Note that some front panel (user interface) elements have been provided for you. It is often a
good idea to start with the user interface to provide a framework around which to build your
application.

ni.com/daq 94

6. Navigate to the Block Diagram window of Audio Exercise.gvi. If you are on the Front Panel, press
Ctrl + E to toggle between Block Diagram and Front Panel, or use the Panel and Diagram buttons

 at the top of the VI.

Take a second to familiarize yourself with the block diagram interface. This is where you will
write graphical code to interface with DAQ hardware and develop custom user interfaces to
interface with your user.

The palette along the left of the VI is where functions and user interface elements reside. You
can manually navigate the palette menus to browse for a function or element, or use the search
function at the top of the palette to find an item by name.

The items available in the palette will change when looking at the diagram versus when looking
at the panel. In the diagram view, you will see programming functions. In the panel view, you
will see user interface elements like graphs, numeric controls, and boolean buttons.

Try finding a few common structures or functions in the palette; things like a While Loop or an
add function.

7. All the elements from the front panel will have a corresponding block diagram element. These

elements, called controls and indicators are how you pass data between the user interface and
the code. The provided block diagram is currently empty because these elements have not yet
been placed. Click on the Unplaced Items menu to view them. They do not need to be placed
now.

Figure 6-1 The Unplaced Items menu stores elements that are automatically created when placing front panel objects.

8. First, we must create an NI-DAQmx Task for our audio measurement. A task can be created

interactively using measurement panels - which will be used in this exercise - or
programmatically using the NI-DAQmx API. Generally, tasks contain all the configuration
information necessary to perform a measurement or generation with DAQ hardware.

9. Click the plus icon next to the Audio Exercise.gvi tab at the top of the VI window, and select

Analog Input, as the image below:

ni.com/daq 95

Figure 6-2 Quickly add a new file to your project using the plus icon.

The resulting display is called a Measurement Panel. Measurement panels provide you
immediate access to the I/O of your hardware. You can adjust measurement or generation
configuration settings in the configuration pane to the right, and observe the measured data in
real time in the graph at the center. You can also capture data from this view using the record
function at the top left of the panel.

10. Configure the Channel and Task settings in the configuration pane of the measurement panel as
shown in Figure 6-3.

ni.com/daq 96

Figure 6-3 The configuration pane contains all of the relevant channel and task settings for the type of task in the open

measurement panel.

ni.com/daq 97

NOTE: Choosing the Right Input Configuration

Noise and other signals can enter the signal through the wires between the sensor and the

DAQ device, as wires act like antennas. Shielding and other techniques can help to reduce this

effect.

The terminal input configuration is the easiest way to eliminate a lot of noise. Single-ended

measurements (RSE and NRSE) only take the positive sensor signal (ai+) and reference it to the

system or chassis ground (GND). The chassis ground typically does not have any noise on it,

and is represented by the solid black line below. The signal line does typically have noise on it.

With Single-ended measurements, the noise will still be seen because the acquired data will be

the difference between the noisy signal line, and the clean GND line.

Differential configuration means that the ADC will take the difference between the ai1+ and

ai1- pins on the DAQ device, which is the most accurate way to measure from a sensor as it

eliminates noise that is common to both the positive and negative wires.

Always use this configuration if available for sensor acquisition.

ni.com/daq 98

11. If it is not running automatically, run the measurement panel by clicking on the run arrow at the

top left . Run an MP3 source into the AUDIO IN terminal of the demo box and observe the
acquired data – this can be your cell phone or the laptop provided. If using the laptop provided,
launch Windows Media Player and use one of the sample songs provided. Be sure the volume on
your source device is adequately high to ensure the best possible acquisition.

12. After a few seconds, stop the task by clicking the stop button .

13. Save the task using Ctrl + S or by navigating to File » Save Analog Input.task.

We have now successfully configured a measurement task and taken an interactive measurement.
To use this measurement task alongside other operations (like output, analysis, logging, etc.) we
must incorporate the measurement into our Audio Exercise VI.

14. Switch to the Audio Exercise.gvi tab and open the block diagram by clicking the Diagram button

.

15. Start creating code by dragging Analog Input.task from the Project Files onto the block
diagram, as shown in Figure 6-4. Note that, along with a constant specifying which task to run,
you have also been provided with:

a. DAQmx Read function
b. Duration constant
c. Data indicator.

This is all the necessary code to run this measurement, however we will need to add to and
delete from this code to achieve our desired measurement.

ni.com/daq 99

Figure 6-4 Dragging a task onto the block diagram automatically generates all of the code necessary to run that task.

16. The following steps will guide you in building the rest of your DAQmx Analog Input

measurement VI:
a. Select the DAQmx Read function, note that the configuration pane on the right

populates with all the settings that can be adjusted for this function.

b. Ensure the function configuration for DAQmx Read is as follows:
i. Channel Type = Analog Input

ii. Data Format = Waveform
iii. Channel Count = Single Channel
iv. Sample Count = Multiple Samples
v. Read By = Time

c. Move the task in control to the left to create some space. You can also hold Ctrl and

click and drag the mouse on the block diagram to dynamically create and remove
space on the block diagram.

d. Navigate to the palette to find the While Loop structure inside the Program Flow
sub-palette.

e. If one is not created automatically, create a while loop: select while loop from the
palette, then click and drag around the code you would like to iterate during the
loop’s operation. In this case, drag the loop around the DAQmx read function and its
inputs and outputs, leaving the task input outside.

f. Once the measurement operation completes and we exit the while loop, we must
clear and dispose of any references to hardware to free them for use by other

ni.com/daq 100

processes or tasks. To do so, navigate or search the palette for the DAQmx Clear
Task function (Hardware Interfaces » NI-DAQmx), and place it to the right of the
while loop.

Figure 6-5 Find DAQmx functions under the Hardware Interfaces section of the palette.

g. Properly informing your user of errors generated during operation is important, but

should be done in a controlled and deliberate manner. After clearing DAQmx tasks,
we will combine any error wires, and display any errors to the user using two
functions: Retain First Error and Display Error. Navigate or search the palette for
these functions and place them to the right of DAQmx Clear Task.

h. Now that all functions have been placed, wire them together using the purple Task

and yellow Error wires through the Task In/Out and Error In/Out terminals,
respectively. This ensures that errors and task configuration information propagate
from function to function. Your code should now look like Figure 6-6.

Figure 6-6 DAQmx task code will always follow the same pattern of create/configure channel information, start, acquire

or generate, clear, and close.

17. Attempt to run your newly created program. Notice that the run arrow is broken (). LabVIEW
operates with an always-on compiler that is constantly compiling your block diagram code. The
run icon informs you as to whether there is currently an error preventing the code from
compiling properly to run. Clicking on the broken run arrow will open the Errors and Warnings
pane and inform you of potential issues.

a. Click the broken run arrow

ni.com/daq 101

b. Note the error in this case: “The required input terminal is unwired.” This means a

required input to one of the place functions is not properly connected. In this case,
the problem is the while loop’s condition terminal, which dictates when the while
loop is to stop iterating. In its currently state, the while loop would run infinitely. To
correct this, we should create a stop button to allow the user to stop the code from
operating.

c. Double-click on the error to highlight the problem area on the block diagram.

d. Open the Unplaced Items menu discussed previously, and retrieve the Stop Button

control that has been provided. Place this control near the conditional terminal of
the while loop.

Figure 6-6 The Unplaced Items menu stores controls and indicators you have yet to place on the panel or diagram.

e. If our DAQmx analog input task has an error, it would be ideal if the loop would also

stop and notify the user of the error. This can easily be accomplished by adding
some simple Boolean logic.

f. From the palette, find the OR function under Data Types » Boolean. Place this

function near the condition terminal.

g. Delete the wire between the stop control and the condition terminal. Wire the stop
control into the bottom of the newly placed OR function.

h. Next, create a branch from the error wire coming out of the DAQmx Read function

(right click on the wire and select Create branch). Connect the error wire branch to
the top input of the OR function.

i. The code you just wrote (pictured below) will automatically command the while

loop to stop iterating in the event of an error from the DAQmx function or the user
clicking the stop button.

ni.com/daq 102

Figure 6-7 An OR function can be used to command a while loop to stop in the event of an error or a user pressing the

stop button on the front panel.

18. To ensure that the DAQmx Read VI receives the Task and Error values from one iteration to the

next, you will need to use shift registers within your while loop.

a. Right-click the output tunnel of the purple DAQmx Task wire and select Change to
Shift Register. This will change the output tunnel to a shift register, and then allow
you to select the proper input terminal. Click the input tunnel for the DAQmx Task
wire.

Figure 6-8 Tunnels on the border of a while loops can be changed to a shift register to pass data from one iteration of

the loop to the next.

b. Repeat for error wire tunnels. This will create a new input terminal on the left side

of the while loop that you will need to wire to the error input of DAQmx Read (See
Figure 6-8).

19. Switch to the front panel of the VI by pressing Ctrl + E or using the Panel button at the top of
the VI window. As you create controls and indicators on the block diagram, their corresponding
front panel elements are stored in the Unplaced items bin, just above the palette, as with the
block diagram. A blue circle with a number indicated how many unplaced items are available.

20. From the unplaced items bin, click and place the data indicator (a graph) on the front panel
above the provided graph – you may need to resize the graph to fit.

21. Run the VI by clicking on the run arrow at the top left . Run an MP3 source (your cell phone,
or the laptop) into the AUDIO IN terminal of the demo box and observe the acquired data on
your front panel indicator. You should see data like in Figure 6-9.

ni.com/daq 103

Figure 6-9 Front panel controls and indicators give the user a means to view data and interact with the program.

22. Use the stop button to stop the code when you are done. Save the VI.

23. Return to the block diagram using Ctrl+E.

24. Make some space to the left of the while loop by holding Ctrl, clicking and dragging your cursor

in the area you’d like to expand, as in Figure 6-10.

Figure 6-10 You can dynamically create space on a block diagram by holding control while clicking and dragging your

cursor.

25. Navigate to the DAQmx API palette (hardware interface » NI-DAQmx » Task Config/Ctrl and
select the DAQmx Configure Logging VI. Place it to the right of DAQmx task constant, and wire
the Task and Error wires through the function (note that you will need to break/delete the
existing wires to do so). Your code should look like:

ni.com/daq 104

Figure 6-11 DAQmx Configure Logging is the easiest method to incorporate logging into your DAQ task.

26. Note that the configure logging VI still has an exclamation mark icon () on the top left. This
means there is a required input to the function that is not currently wired. To determine which
input is required, press Ctrl+H to open context help, then click on the DAQmx Configure
Logging function. The context window will provide additional information about panel and
diagram elements as you hover over them, as in Figure 6-12. The bold terminals are required,
and the code will not be able to compile without creating and wiring a control or constant to
these terminals.

Figure 6-12 Context Help can be toggled using the shortcut Ctrl + H, and provides detail on the inputs, outputs, and

functionality of each element of the program.

27. In this case, File Path is required. There are two options to address this:

a. Create a file path constant that will only be visible on the block diagram. This is a
good option if you will consistently write to the same path every time you run your
code.

b. Create a file path control that will be visible on the front panel. This is a good option
if you would like to give your end user (or yourself) the ability to change the file
path at run time without having to look at the code.

28. For this exercise, we will use a control. Right click on the File Path input terminal of DAQmx
Configure Logging, and select Create control, as in Figure 6-13.

ni.com/daq 105

Figure 6-13 Create controls, constants, and indicators by right-clicking on the terminals of a block diagram element.

29. Return to the front panel (Ctrl+E). The control you just created should be in the Unplace Items

palette. Retrieve it and place it to the right of the chart.

30. Populate the new control with a file path where you would like to log your audio measurement
data. Enter the following string:
C:\Seminars\cDAQ + LabVIEW NXG HO\Exercises\Audio\Audio_Data.tdms

Optional: You can also browse to your own path by pressing (…). If you do not have a TDMS file
to point to, click the address bar to copy the path of the file, manually paste the path into the
file path control. Then, manually add \Audio_Data.tdms.

31. Use the provided auxiliary cable to provide some audio input to your DAQ hardware. Run your
program for a few seconds, then stop it.

32. Navigate to the saved data file and double-click it to open the file in Excel. If Excel is not the
default file option, right click the file and choose Open with > Excel Importer. Observe the

saved data format, as in Figure 6-14.

Figure 6-14 The TDMS file format is specifically designed for storing technical data and includes all relevant metadata
that might be useful for a DAQ measurement application.

ni.com/daq 106

33. The DAQmx Configure Logging function uses the TDMS file format for logging data with
metadata efficiently. TDMS was specifically designed by National Instruments for effectively
logging measurement data in a fast, scalable way. There is also a free Excel Importer tool for
opening TDMS data files in Microsoft Excel, even without any other NI Software installed. To
learn more about the format, review the whitepaper at www.ni.com/tdms.

34. When finished, close the data file, save your VI, and move on to the next section.

Exercise 2: Filtering and FFT

Goals • Add a Fast Fourier Transform (FFT) to the audio signal to view the signal in the frequency
spectrum

• Interactively configure a low-pass filter to remove the high-frequencies from the audio
signal. Use that configuration in your code.

• Add a band-pass and high-pass filter to split the signal into Bass, Mid-tone, and Treble,
attenuate signals, and mix back together

• Create a subVI to contain all the signal processing

Part A 1. Before placing the signal processing functions, first create empty space within the while loop
for these functions using Ctrl + click-and-drag, as before.

2. Open the Functions Palette and navigate to Analysis » Signal Processing » Measurement and
select FFT Power Spectrum and PSD. Place this VI to the right and below the DAQmx Read VI,
as in Figure 6-16.

Figure 6-15: As you explore palettes, notice the numerous analysis functions available in LabVIEW

a. When placed, this VI will pop-up a configuration window to specify the type of data

and desired analysis. Leave the default settings: Power Spectrum with Continuous
data.

b. Wire the DAQmx Read data output into the signal input of the Power Spectrum.
You can right click and select create branch to branch the existing data wire, or save
time by holding Ctrl and clicking the wire to create a branch.

c. This function will compute a fast Fourier transformation and output a Power
Spectrum, which displays the power of each signal for each frequency band.

ni.com/daq 107

d. Open the Unplaced Items palette menu and retrieve the Frequency Spectrum
indicator. Place it just after the Power Spectrum/PSD. Wire the Power Spectrum for
1 Chan output into the input of the provided Frequency Spectrum graph.

e. Wire the Error out of the DAQmx Read into the Error In of the Power Spectrum

function, and then connect the Error Output into the Shift Register and the OR
function.

Figure 6-16 FFT analysis functions accept time-domain measurement data and return frequency-domain analysis

3. Save the VI.

4. Run the VI to observe the Frequency spectrum of the audio signal, shown below:

Part B 1. Click the Captured Data icon In the Navigation Pane. Import the TDMS file created

previously by clicking the import button and navigating to your saved file.

ni.com/daq 108

2. Once imported, double-click on the file to open the data set in the Data Viewer. The Data
Viewer allows you to interact with the dataset and capture subsets of data that may contain
events you are interested in exploring further.

3. In the Data Viewer, select Filter from the Interactive Analysis section of the Configuration
Pane. This creates a filter analysis pane with the data set you were previously viewing. Here
you can play with different filtering settings and view the resulting data set in real time. Take a
minute to explore this functionality. When finished, configure a Lowpass Butterworth filter
with the following settings:

a. Cutoff frequency = 600
b. Order = 10

4. Once configured, click Configured Code at the bottom of the analysis pane to show the block

diagram code necessary to implement the filter you’ve just configured. From here, click the
Copy to Clipboard button.

5. Return to your exercise block diagram, and paste the copied code. Position the pasted code
between the DAQmx Read and Power Spectrum functions.

6. Wire accordingly for error and signal wires. Expand the while loop if you need more space. The
resulting diagram should look like Figure 6-17.

7. Switch to the front panel and run the VI. Observe how the filter alters the frequency spectrum

of your acquired data. Save the VI.

Figure 6-17 Applying a filter to your acquired data can focus the resulting data set on a particular spectrum of interest.

ni.com/daq 109

Part C 1. Add in 2 more filters, one bandpass filter for the mid-range frequencies, and one highpass
filter for treble frequencies. You will need to add more space to the While Loop to place two
more filters.

a. Select the filter and its constant inputs by holding shift and clicking each item. Press
Ctrl + C to copy the functions, and Ctrl + V to paste them lower in the while loop.

b. Select the first copy of the filter code, and use the configuration pane to change the
type to bandpass. Select the second, changing the type to highpass.

c. Wire the error out of the Lowpass into the error in of the Bandpass Filter. Wire the
error out of the Bandpass into the error in of the highpass. Wire the error out of
the highpass into the error in of the Power Spectrum function. You will need to
adjust the Block Diagram spacing again.

Figure 6-18 The error wire specifies the order of operations, following the principles of dataflow.

d. The bandpass cutoff frequency must always be greater than zero and less than the

upper cutoff frequency. Set Low cutoff frequency to 800, add a new constant for
the high cutoff frequency and set it to 3000.

e. For the highpass filter, set the cutoff frequency to 5000.

f. The filters are now cascaded in series for the error wires, which is acceptable.
However, we do not want to run the filtering in series; the filtering must be in
parallel to allow each filter to view the original sound signal. Branch from the data
output from the DAQmx Read VI and wire this to the signal in terminal of each filter.

ni.com/daq 110

Figure 6-19 Each filter will operate on the same original data set acquired by the hardware.

2. With the above setup, only the lowpass filtered signal will be displayed. However, the goal of
an audio equalizer is to mix the signals back together after filtering them out and attenuating
them.

a. To attenuate the signals, you need to operate on the array of numeric data within
the waveform rather than the entire waveform. Use the Waveform Properties
function for each of the three waveform clusters to extract the array of data, Y.

i. Navigate to Data Types » Waveform » Analog Waveform on the Functions
Palette.

ii. Place 3 Waveform Properties functions on the diagram and wire the
waveform output from each filter into the Y input. Since we only care about
the array of data, you can shrink each waveform properties function down
to a single element, as in Figure 6-20.

Figure 6-20 Resizing functions like Waveform Properties to display only the properties of interest keeps your code clean

and readable.

b. Place a multiply function for each array from the Math » Numeric functions Palette
and connect each one of the three arrays to the top input of the function.

ni.com/daq 111

c. Drag each of the provided control terminals for Bass, Mid-tone, and Treble to the
space before each multiply function, and wire them to the open input.

Figure 6-21 Adding amplification code provides the ability to amplify or attenuate each section of the frequency

spectrum.

3. To add the arrays back together, use an Add function as you did to add the Boolean functions
together for the Conditional terminal.

a. Place it from the Math » Numeric Functions Palette.

b. Expand for three inputs, and wire the arrays into it accordingly.

c. To build the arrays back into a waveform, use a Waveform Properties function and
branch from the previous waveform to use as a reference for the waveform in
input on the top of the function. You can copy one of the previously placed
waveform properties functions, or add a new one from the palette. Either way, the
default configuration is to read, not write, properties.

d. Change the Waveform Properties function to write the Y data array by selecting the

function and using the Configuration Pane to Set All to Write.

e. Wire the output of the Add into the Y terminal of the Build Waveform.

f. Delete the existing data input to the Power Spectrum VI, and wire the output of the
waveform properties node in it’s place. The Block Diagram code within the While
Loop should appear as follows.

5

ni.com/daq 112

Figure 6-22 Rebuild the complete waveform by summing the bass, mid-tone, and treble component

4. Save the VI.

5. Run the VI and set the level of attenuation of the signals on the Front Panel to visualize the
effect of the filters.

Part D 1. At this point, the Block Diagram is getting pretty messy, and it would be in your best interest to
try to clean it up. In LabVIEW, it is possible to make a subVI, which is a function that you create
and use within a larger VI. In this example, we will make a subVI for all the signal processing.

2. To prepare the Block Diagram for creating a subVI, you need to align the Controls (Inputs) to

the left side and the indicators (outputs) to the right. Everything that you wish to conceal
within the subVI should be in the center. Here is an example:

The blue section will be contained within the subVI, and the wires that are enveloped in the orange
section will be inputs and outputs to the subVI function. If no terminals exist for either inputs or
outputs, they will be created along with the subVI.

ni.com/daq 113

3. To create the subVI, left-click and drag a selection around the entire blue section from the prior
image.

a. After you have selected the items, navigate to Edit » Create subVI from Selection.

b. This will put all the enclosed items within a new subVI and automatically create

controls and indicators

4. You can now proceed by editing the icon for the subVI and changing the wiring if required.
Double-click on the subVI icon to begin this process. This will bring up the Front Panel of
the subVI in a new tab.

a. Note that all the necessary controls and indicators to reflect the function’s inputs
and outputs have been created for you, but they are in the Unplaced Items bin. You
may wish to place them on the front panel, but this is not required for the subVI to
function. A good rule of thumb is to place inputs on the left of the panel and
outputs on the right.

b. Next to the Panel and Diagram selector, you can click on Icon to create a custom
icon for your subVI.

Figure 6-23 Editing the icon ensures that the functionality of your subVI is clear

and that the connection terminals are efficiently located.

c. Browse around the environment and edit the icon as you desire. It is best to add in

text and choose an icon to indicate the functionality of the subVI. The configuration
pane and palette contain a variety of tools to customize your subVI icons with icons,
color, pictures, and more.

ni.com/daq 114

Figure 6-24 A good icon makes a subVIs functionality apparent in the top-level VI in which it is used.

d. See above for an example of an icon that you could use. Feel free to create your

own.

e. Depending on how you selected the code to go into your subVI, you may wish to
adjust the wiring configuration. It is best to keep the inputs on the left and outputs
on the right. The top and bottom are typically used for specifications and optional
inputs. Figure 6-24 shows a good mapping of terminals for this exercise – adjust
your icon to match.

f. Select Done once you are satisfied with the terminal mapping.

g. By default, the subVI is saved as Function.gvi in the project files view of the
Navigation Pane. You may wish to rename this file to Signal Processing subVI by
right-clicking the file name and selecting rename.

h. Close the subVI.

5. Open the Block Diagram of your main code and notice that the subVI has replaced the
previously written code, and your icon is displayed. Your run arrow should be solid if all
terminals of the subVI are properly mapped. Notice how much cleaner your block diagram
looks, you may want to user Ctrl+click+drag to remove some of the free space.

ni.com/daq 115

Figure 6-25 Proper use of subVIs can greatly simplify your top-level code.

6. Save the VI. Run the VI to verify that it still functions correctly.

Exercise 3: Output Processed Signal

Goals • Create an Analog Output Task using measurement panels to play a simple tone

• Modify code to continually generate and output a new waveform

• Add this code into the Analog Input code and then output the filtered Audio Signal

• Modify code to allow for two analog inputs and two analog outputs because it is a stereo
signal with Right and Left audio signals

Part A 1. Create a new Analog Output measurement panel by selecting the Add File… icon in the tab
toolbar and selecting Analog Output. This will open an analog output measurement panel.

2. A single output channel should be created for you. Configure this channel and task using the
configuration pane to the right. Set the configuration as shown in Figure 6-26.

Figure 6-26 The frequency of a sine wave test signal in an analog output measurement panel is dictated by the desired

sample rate and output buffer size.

3. Click the run button to run the task. This should play an 800 Hz tone through the speaker of

your demo kit until the stop button is pressed.

ni.com/daq 116

Part B 1. To update the output waveform while running, you can change the output buffer size in the
Task configuration, but this isn’t the most user-friendly experience. To address this, we can use
the task to write a new VI with a proper user interface.

2. Save the analog output task to your project files, and create a new VI using the plus icon in the
tab menu.

3. Switch to the block diagram, then drag and drop Analog Output.task from the project files on

to the block diagram to automatically generate the output code.

4. As-is, the code is missing a few important pieces. Perform the following steps:

a. For now, we’ll only be using a single output channel. Change the configuration of
the DAQmx Write VI to Single Channel in the configuration pane, as shown below:

b. Delete the data input constant and the For Loop and all code within it.

c. We now need to generate the sine wave for our hardware to output. To do this,
navigate the palette to Analysis » Signal Processing » Generation, and select the
Wave Generator function.

d. Create constants for amplitude and sample rate, and set their values as follows:

i. Amplitude = 0.005
ii. Sample rate = 40,000

e. Branch the sample rate wire and connect it to the samples input as well.

f. Create a control for the frequency input.

g. Wire the sine wave output into the DAQmx Write data input terminal.

h. Finally, place a while loop around the DAQmx Write function. Create a stop button

on the input of the conditional terminal (right-click and create control).

5. Switch to the front panel and place all the controls and indicators from the Unplaced Items
menu. Right click the frequency control and select replace. Choose a more user-friendly
graphical control to adjust the frequency of the output, like a knob or slider. Double-click

ni.com/daq 117

the minimum and maximum of the scale of this new control and make the range from 1 to
20k. Your front panel and block diagram should look like Figure 6-27.

Figure 6-27 The Split view allows you to see both the front panel and block diagram at the same time.

To access Split view, click the “Split Orientation” button:

6. Save the VI (you may choose to rename it in the Project Files pane if you wish). Run the VI

and adjust the frequency control. Changing the frequency control should correlate to a
change in the pitch of the tone being output from the speaker of your demo kit.

Part C 1. To use the analog output code to play back the processed audio input, you will need to add
your new analog output code to the existing VI that you created to read sound in.

a. Copy the entire Block Diagram Code of your analog output VI and paste into the
Block Diagram of the Analog output as seen in the figure below. You can also select
the code from one Block Diagram and drag-and-drop onto the other.

ni.com/daq 118

Figure 6-28 Analog output code added to the analog input block diagram.

2. The goal is to now merge the two while loops together. Because the acquisition and generation
are linked together and data needs to be shared from one to the other, they must be in the
same while loop.

a. You have two options: remove one loop and add code into the other, or remove
both and draw a new while loop. To remove a loop without deleting the code
contained within it, right click on the loop border and select Delete While Loop.

b. The result is the same, and it is only a matter of preference. You will also need to
remove one Stop button as you no longer need both.

c. Your block diagram should appear as in Figure 6-29:

ni.com/daq 119

Figure 6-29 Expand the OR function to stop the while loop in the event of an error from either task or a user pressing
the stop button.

3. Remove the Function Generator VI and all its connected constants and controls inside of the

While Loop.

4. Wire the Output Waveform terminal of the Signal Processing subVI to the data input terminal

of the DAQmx Write VI.

Figure 6-30 Wiring the output of the DAQmx Read to the input of the DAQmx Write means our acquired data will be

looped back out to the connected speaker.

5. Now that there are multiple tasks in a single VI, it is best practice to explicitly handle your
hardware references and error wires. Make the following adjustments to the code:

a. Place a DAQmx Clear Task VI to the right of the while loop, below the existing

DAQmx Clear Task.

b. Wire the task wire from DAQmx Write to DAQmx Clear Task.

c. Wire the error wires from DAQmx Write, through DAQmx Clear Task, and

terminating in the Retain First Error function. This ensures errors from either task
are properly elevated to the user.

d. Your resulting code should look similar to Figure 6-31.

ni.com/daq 120

Figure 6-31 Proper task reference and error handling is important in any DAQ application.

6. Save the VI.

7. Run the VI with your MP3 source playing. Toggle the attenuation and filter frequencies. Can
you hear the effect?

 <End of Exercise>

ni.com/daq 121

ni.com/daq 122

Chapter 7 Vibration Measurements and Analog Output Control

ni.com/daq 123

Goals • Write a program to control the speed of a fan and acquire data from accelerometers attached to

the fan.

• Add code analyze the vibration signal in LabVIEW NXG

• Understand these key concepts:

o Accelerometer measurements

o Measurement Panels

o Creating NI-DAQmx Tasks Interactively

o Creating NI-DAQmx tasks using the API

o Combining measurement and control tasks

o Processing data with LabVIEW NXG

ni.com/daq 124

Part A
Measuring Vibration from an Accelerometer

Many sensors for measuring acceleration and pressure are based on the principle of piezoelectric
generation. The piezoelectric effect denotes the ability of ceramic or quartz crystals to generate electric
potential upon experiencing compressive stresses. These mechanical stresses are triggered by forces such
as acceleration, strain, or pressure.

Figure 7-1 An accelerometer uses a seismic mass to create a small electrical signal based on piezoelectric generation.

In the case of microphones, acoustic pressure waves cause a diaphragm, or thin membrane, to vibrate and
transfer stresses into the surrounding piezoelectric crystals. Accelerometers, on the other hand, contain a
seismic mass that directly applies forces to the surrounding crystals in response to shock and vibrations.
The voltage generated is proportional to the internal stresses in the crystals.

A class of piezoelectric sensors, known by the term integrated electronic piezoelectric (IEPE), incorporates
an amplifier in its design next to the piezoelectric crystals. Because the charge produced by a piezoelectric
transducer is very small, the electrical signal produced by the sensor is susceptible to noise, and you must
use sensitive electronics to amplify and condition the signal and reduce the output impedance. IEPE
therefore makes the logical step of integrating the sensitive electronics as close as possible to the
transducer to ensure better noise immunity and more convenient packaging. A typical IEPE sensor is
powered by an external constant current source and modulates its output voltage with respect to the
varying charge on the piezoelectric crystal. The IEPE sensor uses only one or two wires for both sensor
excitation (current) and signal output (voltage). The NI 9234 C Series module in your NI CompactDAQ
chassis provides this constant current source to IEPE accelerometers and microphones.

In this exercise, you will measure the vibration of a fan using the accelerometers on the Sound and
Vibration Signal Simulator. The NI 9234 C Series Sound and Vibration Input Module features four
simultaneously sampled channels and can measure signals from both IEPE and non-IEPE accelerometers
and microphones.

Before you start this exercise, confirm that the accelerometer is properly connected and you can acquire
basic data from the channel connected to the accelerometer.

1. Ensure that the green Power LED and amber Ready LED are lit to confirm that the chassis is

connected over USB and powered on.

ni.com/daq 125

2. Examine the wiring into the NI 9234. Confirm that the BNC cables are connected to the Sound and

Vibration Signal Simulator as follows:

a) Ch. 0 X Acceleration

b) Ch.1 Y Acceleration

c) Ch. 2 Tach Out

3. Launch LabVIEW NXG by pressing the Windows key and selecting LabVIEW NXG.

4. Select File » Open Browse…, and navigate to C:\Seminars\cDAQ + LabVIEW NXG

HO\Exercises\Vibration\ to open Vibration Exploration.lvproject.

5. Click on the home button to the top left, then select Use Your Hardware. This will bring up
SystemDesigner Live View, where you can see all the hardware currently connected to your
system.

6. Click on the CompactDAQ Chassis and select C Series Sound and Vibration Input Module.

Figure 7-2: Display of all connected hardware with appropriate drivers installed.

7. In the Configuration Pane to the right of your screen, click Create Analog Input to begin acquiring

a basic voltage measurement in a LabVIEW NXG measurement panel. Data should automatically be
acquired and displayed on the graph provided. The graph should look like Figure 7-3.

ni.com/daq 126

Figure 7-3: The configured measurement is used to confirm electrical connections and quickly acquire data.

In addition to verifying hardware functionality, measurement panels allow you to interactively

create acquisition and generation configurations for DAQ hardware. These configurations are

saved in files called tasks.

8. To set up the measurement task, use the configuration pane on the right to set the Channel and
Task settings as shown in Figure 7-4.

Figure 7-4 The configuration pane contains measurement parameters for the measurement panel.

9. After entering the settings, ensure the panel is running, then bump the demo box or the table and

verify that the graph reacts to your input. If you detect no noticeable change, please alert your
instructor at this time.

Every time you set up a new measurement or measurement system, it is a good idea to confirm
that the wiring is correct and that all software is installed and working correctly. LabVIEW NXG’s

ni.com/daq 127

interactive measurement panels provide the insight into your system and setup to help you
eliminate mistakes early in your development process. Similar functionality is available through
the Test Panels of NI MAX, a hardware configuration and management tool.

10. Once you have confirmed that the vibration hardware is working, click the stop icon on the top

left to stop acquisition.

11. Save the task by clicking File » Save Analog Input.task or pressing CTRL + S.

12. Create a new folder to store your tasks by clicking the plus sign above the project files and

selecting folder. Name the folder Measurement Tasks, and place the analog input task in the

folder by dragging and dropping it into place. Your project files should look like Figure 7-5 .

Figure 7-5 The VIs used in your project can be found in the project files view of the navigation pane.

13. Double click Vibration solution_Task Method.gvi.

14. Through the rest of this section you will build the VI shown in Figure 7-6. Ensure that the switch

on the Sound and Vibration Signal Simulator in your hardware demo box is flipped to BNC. Press

the run button in the solution program.

ni.com/daq 128

Figure 7-6 This VI will acquire a time-domain vibration signal and calculate the frequency content using LabVIEW VIs

15. Using the knob in the center of the front panel, adjust the speed of the fan and notice the reaction

in both the time domain and frequency domain. Frequency domain analysis is crucial to many

types of monitoring applications.

16. When finished, close the solution without saving.

17. To start the exercise, double-click Vibration exercise.gvi. The Front Panel has already been

partially built for you.

When starting a new program, beginning with the Front Panel design is a good way to organize your
thoughts around the inputs and outputs that you expect. Once you understand how you want a user to
interact with the code, then you can begin writing the VI to support that functionality.

Throughout this exercise, you will complete this VI to control the speed of a fan and acquire data from an
accelerometer in the Sound and Vibration Signal Simulator. Additionally, you will use LabVIEW NXG to
calculate the frequency components of the acquired signal.

ni.com/daq 129

Figure 7-7 Beginning with the Front Panel design is a good way to organize your thoughts around the inputs and outputs that

you expect.

18. Note that one of the controls from the solution, the knob control for adjusting fan speed, has not

been provided for you. To add one, press to Ctrl + Space or click on the magnifying glass icon at

the top of the palette and type “knob” to quickly locate the knob control.

19. Once selected, click in the front panel to place the control in the empty space above the stop

button. You may want to expand the size of the control and give it a descriptive label like “Fan

Speed” to make it more user friendly. Your front panel should now look like Figure 7-8.

Figure 7-8 You can add controls to the front panel by selecting them from the palette. Controls can be arranged and sized in any
way you'd like.

ni.com/daq 130

20. Notice that the run arrow in the top left corner is broken . This is because the code contains

errors, or in this case, is not in a running state. LabVIEW continuously compiles in the edit

environment, so you will always know if your code can compile and run. Pressing the arrow when

it is broken will show a list of errors. Try pressing the run arrow. If your code compiles with no

errors, the run arrow will no longer be broken .

21. Close the Errors and Warning pane and select Diagram at the top of your

front panel. The keyboard shortcut to switch between the front panel and block diagram is Ctrl + E.

When the block diagram opens, you will see the following code:

Figure 7-9 The Block Diagram does the work of your program. This is where you will write the code to control the Front Panel.

Because the code has been started, this Block Diagram includes some basic elements already. Each
element on the Front Panel has a corresponding element on the Block Diagram. To find the corresponding
Front Panel element, you can double click the element on the block diagram to highlight it. Try double-
clicking on the Time Domain icon. LabVIEW will highlight the location of the corresponding Time Domain
indicator on your panel. Then double click on the same item on the Front Panel. This is a convenient way
to find items on either the Front Panel or Block Diagram.

The white text boxes are annotations. You can create notes on the block diagram simply by double clicking.
It’s always a good idea to properly document your code so you (if you come back a week later) or someone
else can understand what is going on.

22. Take note of the unplaced items menu of the block diagram palette. This is where the elements

that correspond to newly placed front panel items, like the knob added earlier, will be available.

ni.com/daq 131

This ensures you can easily locate new elements and add them to your block diagram code

efficiently. When new elements are available in the unplaced items menu, there will be a blue dot

over the icon as in Figure 7-10.

23. Place the Fan Speed control in the top left corner of the while loop for later use.

Figure 7-10 New block diagram elements are stored in the Unplaced Items menu for easy access.

24. Now that you are familiar with the elements of the program, you can start building the code to

acquire strain data. To start, make sure that the Block Diagram is visible.

25. Find the task files saved at the beginning of this exercise in the Measurement Tasks folder in the

Navigation Pane. Right click on Analog Input.task to rename the task to Vibration AI.task. Drag

Vibration AI.task on to the block diagram as shown in Figure 7-11.

ni.com/daq 132

Figure 7-11 Dragging a task on to the block diagram places a task constant, DAQmx Read or Write function, and any required
inputs or relevant outputs.

26. Delete the data indicator that was placed along with the task, it is not required for this program.

Clear any broken wires with Ctrl + B.

27. Wire the data output of DAQmx Read to the provided Time Domain indicator; this will plot our

acquired time domain data in the graph on the front panel.

28. Move the task in constant outside the left side of the while loop; it should remain wired to the

DAQmx Read function.

29. For this exercise, a large part of the coding will come from the DAQmx palette. To access this
palette, click Hardware Interfaces, then select NI-DAQmx.

30. Click on the double arrow () to keep this palette visible (arrow in Figure 7-12).

Figure 7-12 The DAQmx palette includes all the required VIs for communicating with your NI CompactDAQ chassis.

ni.com/daq 133

31. Drag the following VIs from the DAQmx palette and place them as shown in Figure 7-18.

a) DAQmx Stop Task

b) DAQmx Clear Task

Figure 7-13 DAQmx functions will always follow the same pattern, regardless of the hardware operation.

If you recall from the example programs you examined in the earlier exercises, the DAQmx pattern almost
always follows the same flow. A channel is created, settings like timing and triggering are configured, the
task is started, the channel is read or written to, then the task is stopped and the channel is cleared. When
using DAQmx tasks as in this case, channel creation and configuration are embedded in the task you
created using measurement panels. Doing so programmatically will be covered in Part D of this exercise.

32. Wire task and error wires through the code as in Figure 7-14. This will pass the task values and any

errors that may arise through the code. The Retain First Error and Display Error functions at the

end of the program will then display any errors that may have occurred during operation to the

user.

Figure 7-14 Wiring the task and error wires through dictates the flow of your code.

ni.com/daq 134

33. Wire the error wire from the DAQmx Read VI to the input of the Or function, as shown in Figure

7-15. This VI will OR the inputs to stop the while loop from executing. The code you just wrote will

stop the loop if an error occurs or a user stops presses the stop button.

Figure 7-15 The OR function concatenates the inputs, stopping the While Loop if the code has an error or the user presses stop.

34. Once you wire the error wire to the OR function, your code should be ready to run. Check to see

that the Run Arrow is intact ().

35. Press Ctrl+E to toggle to the Front Panel.

36. Press the run button. You are now acquiring vibration data from the accelerometer in the Sound

and Vibration Signal Simulator. Make sure that the switch on the Sound and Vibration Signal

Simulator is set to DIAL and try increasing and decreasing the speed of the fan with the dial.

Notice the changing signal on the screen.

37. Stop the program by clicking the stop button.

Part B Controlling the Fan Speed with Analog Output

Many times, data acquisition code needs to do more than simply measure a signal. Adding control to the
code enables an operator to use the software to control something. This could be a digital output, like an
alarm or PWM speed signal, or an analog output, like a stimulus waveform. In this example, you will use a
DC voltage signal to control the speed of the fan that was controlled with an external knob in the first part
of the exercise.

Before you start this exercise, switch the physical Fan Speed Control switch to BNC.

1. To begin this exercise, we must first create an analog output task.

ni.com/daq 135

a) Create an Analog Output using the New button:

b) By default, Voltage_out/ao0 is added to the task. Change this to Voltage_out/ao1.

c) In the Test Data section of the configuration pane, change the Voltage to 5V.

d) Change the physical fan switch from Dial to BNC, then press the Run button. You should

hear the fan turn on.

e) Set the Voltage to 0V. You should hear the fan turn off.

f) Stop the analog output with . Save the task as Fan Control AO.task.

2. Open the Block Diagram of Vibration exercise.gvi

3. Repeat the drag-and-drop process from Part A for Fan Control AO.task. Place is as shown in Figure

7-16.

Figure 7-16 Dragging a pre-configured task onto the block diagram provides all the code necessary to perform that task's
operation.

4. Delete the numeric array constant and move the task constant outside of the while loop.

5. Connect the pre-existing Fan Speed control to the data terminal of the DAQmx Write VI.

6. Notice that the wire you just created is broken. Select the wire and hover your cursor over it, a

tooltip should appear telling you why the wire is broken. In this case, the data type of the control

(double) does not match the input terminal data type (1D Array of doubles). To fix this, reconfigure

the DAQmx Write function as Single Channel, Single Sample using the configuration pane as in

Figure 7-17.

ni.com/daq 136

Figure 7-17 You can reconfigure most DAQmx functions by selecting the function on the block diagram. The configuration pane
will populate with properties that can be adjusted.

7. Like in the previous section of this exercise, drag the following VIs onto the block diagram and

place them like you see in Figure 7-18.

a) DAQmx Write

b) DAQmx Stop

c) DAQmx Clear

Figure 7-18 The flow of DAQmx code almost always follows the same pattern

You may have noticed that you now have two DAQmx Write VIs. This is because the last value on the
output buffer will persist even after the task is stopped and cleared. In this example, you may end up with
a running fan after stopping the code, depending on the last value. To make sure the fan is always
stopped when the code is stopped, simply write a value of zero to the buffer before stopping and clearing
the task.

8. Wire the Fan Speed control into the data input of the first DAQmx Write VI.

9. Wire the numeric constant next to the second DAQmx Write VI as seen in Figure 28. Select this

DAQmx write function and configure as shown in Figure 7-17.

ni.com/daq 137

Figure 7-19 The second DAQmx Write writes a zero to the buffer to make sure the fan turns off when the VI is stopped.

10. Place a Retain First Error VI between the Clear Task and Error Handler. This VI takes errors from

multiple sources to simplify error handling. To better understand how this function works, use

context help (Ctrl + H).

11. Wire the task and error wire through the code, as seen in Figure 7-20.

Figure 7-20 The task and error wire communicate information between each of the VIs in the code.

12. Expand the OR function inside the while loop to accept an additional input as in Figure 7-21.

Figure 7-21 Some functionals can be expanded to accept additional inputs.

13. Create a branch of the analog output task error wire (CTRL + Click where you would like to branch

the wire) and wire it to the newly created terminal of the OR function.

14. Switch to the Front Panel. Your run arrow should not be broken at this time.

15. Press the Run button.

16. Adjust the speed of the fan using the Fan Speed control knob. You should notice that the vibration

signal in the time domain increases and decreases with the speed of the fan.

17. Stop the VI and save your work. You will use it in the next part of this exercise.

Part C Moving from Tasks to the DAQmx API

As you’ll recall from earlier parts of this exercise, Tasks are created by interactively configuring their
settings through a LabVIEW NXG measurement panel. This is very convenient for getting quick
measurements and testing hardware configurations as you create them. As applications expand to include
multiple tasks of different types, however, making changes to settings configured within a task can become

ni.com/daq 138

inconvenient. Imagine a project with 20, 30, or 100 different tasks and the time it would take to open a
measurement panel to adjust a configuration setting on each one.

The task model of DAQmx, while convenient and quick, does not necessarily scale for all applications.
Luckily, tasks can also be created and configured programmatically using the same DAQmx API functions.
Adopting this method means creating more customizable programs that may be better suited for building
streamlined projects. In this part of the exercise, we’ll take the existing vibration exercise VI and adapt it to
use the API instead of tasks.

1. To begin, open the block diagram of Vibration exercise.gvi.

2. Delete Fan Control AO and Vibration AI task input controls. Clear any broken wires with Ctrl + B.

3. In the palette, navigate to hardware interfaces » NI-DAQmx (you may want to pin this the palette
for easy access).

4. In the palette, find DAQmx Create Virtual Channel and place it twice. Configure each as specified
in Figure 7-22, below.

Figure 7-22 Create Virtual Channels.gvi creates a virtual channel to reference physical channels of a DAQ device.

5. To allow the user to select which physical channels will be used for acquisition and generation, we

must create front panel controls. To do so, right-click on the Physical Channels terminal on the left
side of each VI and select Create control, as in Figure 7-23. Give the controls meaningful labels,
like Fan Control Channels and Vibration Input Channels.

ni.com/daq 139

A control, as the name implies, is an input with a visible element on the front panel that can be
controlled by the user. Conversely, a constant cannot be changed by the user at run time and is
only visible on the block diagram.

Figure 7-23 Controls allow the user to adjust inputs as run time. Every control will have a front panel element that corresponds

to a block diagram element.

6. Continue to place the following VIs and wire their task and error wires together as shown in Figure

7-24:
a. DAQmx Timing
b. DAQmx Start

Figure 7-24 The DAQmx API will always follow the same basic order of operations, regardless of hardware used or

measurement type.

7. Take a closer look at the DAQmx Create Virtual VIs – note how they have different inputs because

they are creating virtual channels for different measurement types. The analog input vibration
instance of this VI has configuration inputs specific to accelerometer measurements. Right-click

ni.com/daq 140

and select Create constant for each of the following inputs. Modify the values of the constants to
match Figure 7-25:

a. Measurement range
b. Sensitivity
c. Current excitation

Figure 7-25 Inputs to the Create Virtual Channels VI vary depending on how the VI is configured. For acceleration, as in this case,

measurement-specific inputs are available like accelerometer sensitivity.

8. The DAQmx timing VI is used to configure a task’s timing mode, sample rate, and samples per

channel. Create controls and constants, as in Figure 7-26.

Figure 7-26 DAQmx Timing is used to configure timing mode, sample rate, and samples per channel for a task.

9. DAQmx start.gvi commits the settings configured previously and allows the task to start. If no

triggering is configured, data acquisition will begin when this function is called. DAQmx start is a
very important function when task synchronization becomes important, as it gives you the ability
to control the order in which various tasks start.

Figure 7-27 DAQmx start commits the task configuration and transitions it into the running state to begin acquisition or

generation.

10. Click on the DAQmx Read Function. In the Configuration Pane, change Read By: to Samples. This

will configure our task to read sets of samples at a time, instead of acquiring for 1s at a time.
Delete the Duration constant from this function and press CTRL+B to clean up wires.

ni.com/daq 141

Figure 7-28 Changing the DAQmx Read VI to “Read By: Samples” means that when this function is called,

it will read a set of X samples at the sample rate, rather than 1s of samples.

11. By default, the DAQmx Read function will acquire any and all available samples per channel. A

good practice is to set DAQmx Read to read the same number of channels that are being written to
the hardware buffer, as specified at the DAQmx Configure Timing VI. The easiest way to achieve
this is to branch a ware from the Samples Per Channel control and connect it to the number of
samples per channel input of DAQmx Read, as shown in Figure 7-29.

Figure 7-29 You should specify the samples per channel to both the DAQmx Configure Timing VI and the DAQmx Read VI.

12. At this point, the run arrow should be solid. Switch to the front panel.

13. The controls we created on the block diagram are not currently visible on the front panel. New

controls and indicators are stored in the unplaced items (arrow in Figure 7-30) bin or the palette
for easy access. Place the controls from the unplaced items on the front panel as shown in Figure
7-30, you may also need to re-arrange existing elements.

ni.com/daq 142

Figure 7-30 New front panel elements are stored in the unplaced items menu of the palette.

14. Set the Fan control channels, vibration channels, sample rate, and samples per channel controls

appropriately, as in Figure 7-31.

Figure 7-31 Using the DAQmx API means creating front panel controls that allow the user of your program to adjust

configuration settings easily at run-time.

15. Run the VI. It should perform the same as it did previously when using tasks created in

measurement panels. Save the VI and leave it open for the final part of this exercise.

Part D Adding Analysis to Your Acquisition Code

In real applications, the measured voltage signals are complex waveforms that contain multiple frequency
components. Sound and vibration analysis usually involves identifying and examining these frequency
components. To do so, you must convert the signals from the time domain to the frequency domain
mathematically using Laplace, Z-, or Fourier transforms. Fourier analysis is the most common for this

ni.com/daq 143

application because it obtains the magnitude and associated phase for each frequency component in a
signal.

For the next part of the exercise, you will calculate the power spectrum using two methods. The first
method will use built-in LabVIEW VIs and the second will integrate .m script to calculate the same power
spectrum. Using this spectrum, you will calculate the frequency and amplitude of the vibration to
determine the balance of a fan.

1. To begin the exercise, open the block diagram of Vibration exercise.gvi.

2. From the palette, select Analysis » Signal Processing » FFT Power Spectrum and PSD as seen in

Figure 7-32.

Figure 7-32 LabVIEW contains many built-in analysis functions and many others are supported through tool kits and add-ons.

3. Place the FFT Power Spectrum VI in the position shown in Figure 7-33, leave the default

configuration as-is (Power Spectrum; Continuous).

Figure 7-33 The FFT Power spectrum will calculate the frequency spectrum during the acquisition.

ni.com/daq 144

4. Wire the inputs to the VI as seen in Figure 7-34.

Figure 7-34 The power spectrum will be calculated each time the loop in the code runs.

5. To learn more about this VI, press Ctrl+H to bring up the Context Help and hover over the FFT

Power Spectrum. If you want to learn even more about this VI, press the Detailed Help link.

6. With the FFT Power spectrum wired up, open the front panel and run the VI. You should now be

able to see the frequency information from the on-board accelerometer in the graph on the

LabVIEW PS tab.

7. Try increasing and decreasing the fan speed. Notice that both the time domain and frequency

domain signal changes. Try changing the switch on the Sound and Vibration Signal Simulator from

the balanced fan to the unbalanced fan. Notice how the signal changes. Measurements like these

are commonly used for machine health diagnosis.

8. Stop the VI.

Bonus Optional Challenge Exercise

In the VI, there are four controls and indicators we did not use: Detected Amplitude, Detected Tone, Max
Vib Level, and Fan Warning.

For an additional challenge, use the analysis functions available in LabVIEW to make use of these controls
and indicators.

- Represent the amplitude of the vibration signal acquired with the Tone Measurement function.
- Represent the tone of the vibration signal acquired with the Tone Measurement function.
- Allow the user to select a maximum vibration level – when the vibration exceeds this point, turn

on the Fan Warning LED.

<End of Exercise>

