Redefining the measurement units

mol

cd

Luca Callegaro

Politecnico di Milano, 16 November 2018

Luca Callegaro (INRIM)

1 / 83

kg

The need for measurement units Legal metrology

Do not have in your bag different weights, a great and a small; Or in your house different measures, a great and a small. But have a true weight and a true measure . . .

Non avrai nel tuo sacchetto due pesi diversi, uno grande e uno piccolo. Non avrai in casa due tipi di misure, una grande e una piccola. Terrai un peso completo e giusto, terrai una misura completa e giusta ...

[Deuteronomy 25:13-16]

The need for measurement units

Use honest scales and honest weights, an honest ephah and an honest hin.

Avrete stadere giuste, pesi giusti, efa giusto, hin giusto.

[Leviticus 19:36]

One system of units as foundation for the nation

Una mensura vini sit per totum regnum nostrum, et una mensura cervisie, et una mensura bladi, scilicet quarterium Londoniense, et una latitudo pannorum tinctorum et russetorum et halbergettorum, scilicet due ulne infra listas; de ponderibus autem sit ut de mensuris...

[Magna Charta Libertatum (1215), Clause 35]

1 London quarter = 225

The French revolution

Cleaning up the mess

	Longueur de quelque de France.	es p	iea	s	Suite des Mefures p Aunages.	our les
		ligne.	eente.	Call	Montpellier. Provence.	859 60 891 60 888 90
	Besançon, le picd est de Dijon. Dole.	139	20	e.	Toulouse. Troyes.	807 « 351 70
	Grenoble. Lorraine. Lyon.	127	50	A	Iefures rondes pour les	chofes
	Macon. Paris. Rouen.	144	1 1	Ane	Jèches. {Lyon. Pouces cubes	9670
	Strasbourg. Pied de ville	12	3 27	es, bic	(Màcon. 2) Chàlons-sur-Saóne, 2) Vordan	12893 9283 0670
	Vienne en Dauphiné.	15	5 90	nets.	Amboise. Aurai.	552 1934
	Mefures pour les Aut	nage	s.		Blois. Bordeauy. Bourbon-Lancy.	$387 \\ 3868 \\ 573$
	Abbeville, l'aune est de Arras. Bayonne.	309 301	40		La Charité. Charolles, Chàteauncuf-sous-Loire.	967 1224 1105
	Bretagne. Cam.	528 597 524	20	Boi	Cosne. Diéppe. Havre-de-Grace.	314 5157 1743
Auno	Cambrai. Dunkerque.	317 299 305	60 80 60	sseaux	Honfleur. Montreuil. Morlaix.	1976 430 2670
50	Paris. Pour les Soieries. Paris. Pour les Lainages.	527 526	30 50 40	1	Nevers. París. Périgueux.	967 6111 1547
	Morlaix. Nantes.	524 507 526	41 20 44		Roaine. La Rochelle. Bouen.	967 1658 128
	Rouen. Pour les Lainages. Pour les Toileries.	516 519	« 20		Tours. Villencuve d'Agénois. Briare.	543 4100 703
- 3	Saint-Malo.	597	20		Callors.	1469

The French revolution: the metric system

1s : $\frac{1}{24 \times 60 \times 60}$ of the mean solar day (Earth's rotation period);

1 m : $\frac{1}{10\ 000\ 000}$ of $\frac{1}{4}$ of Earth's meridian (from pole to equator);

1 kg : 1 dm³ of water at its maximum density

Universal units: for everybody, for all times

The Metre Convention

Paris, 20 May 1875: an international treaty

Original signatories: Argentina, Austria-Hungary, Belgium, Brazil, Denmark, France, Germany, Italy, Peru, Portugal, Russia, Spain, Sweden and Norway, Switzerland, Turkey, United States of America, and Venezuela

[for His Majesty the King of Italy: Chevalier Constantino Nigra, Knight of the Grand Cross of his Orders of St. Maurice and St. Lazarus, and of the Crown of Italy, Grand Officer of the Legion of Honor,Extraordinary and Minister Plenipotentiary at Paris]

The Metre Convention

The signatories today

The present International System of units (SI)

The seven base units

- m The metre is the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second.
- kg The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
 - s The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom.
- A The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.
- K The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
- mol The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kg of carbon 12.
 - cd The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

Base and derived units

Base units			
kg	Symbol	Unit name	
8	s	second	
	m	metre	
	kg	kilogram	
	A	ampere	
	К	kelvin	
	mol	mole	
	cd	candela	

Base and derived units

Base units		
kg	Symbol	Unit name
8	s	second
	m	metre
	kg	kilogram
2	А	ampere
	K	kelvin
	mol	mole
	cd	candela

Derived units

$$\begin{split} \mathsf{s}^{\alpha} \ \mathsf{m}^{\beta} \ \mathsf{kg}^{\gamma} \ \mathsf{A}^{\delta} \ \mathsf{K}^{\epsilon} \ \mathsf{mol}^{\zeta} \ \mathsf{cd}^{\eta}, \\ \text{where } \alpha, \ \beta, \ \gamma, \ \delta, \ \epsilon, \ \zeta \ \text{and} \ \eta \ \text{are} \ (\mathsf{usually}) \ \mathsf{integers}. \end{split}$$

The International System of units (SI

many derived units

SI units for electromagnetic quantities

d units with special names			
Derived quantity	name	symbol	expression in terms of base units
frequency	hertz	Hz	s^{-1}
energy	joule	J	$m^2 kg s^{-2}$
power	watt	W	$m^2 kg s^{-3}$
electric charge	coulomb	С	s A
electric potential difference	volt	V	m^2 kg s ⁻³ A ⁻¹
electric capacitance	farad	F	$m^{-2} kg^{-1} s^{-4} A^2$
electric resistance	ohm	Ω	m^{2} kg s ⁻³ A ⁻²
electric conductance	siemens	S	m^{-2} kg^{-1} s^{3} A^{2}
magnetic flux	weber	Wb	m^2 kg s ⁻² A ⁻¹
magnetic flux density	tesla	Т	kg s ^{-2} A ^{-1}
inductance	henry	Н	m^2 kg s ⁻² A ⁻²

D

SI prefixes and suffixes

The SI adopts a series of prefix names and prefix symbols to form the names and symbols of the decimal multiples and submultiples of units, ranging from 10^{24} to 10^{-24} .

name	symbol	factor	name	symbol	factor
yocto	у	10^{-24}	deca	da	10 ¹
zepto	z	10^{-21}	hecto	h	10^{2}
atto	а	10^{-18}	kilo	k	10 ³
femto	f	10^{-15}	mega	М	10 ⁶
pico	р	10^{-12}	giga	G	10 ⁹
nano	n	10^{-9}	tera	Т	10^{12}
micro	μ	10^{-6}	peta	Р	10^{15}
milli	m	10^{-3}	exa	Е	10^{18}
centi	с	10^{-2}	zetta	Z	10^{21}
deci	d	10^{-1}	yotta	Y	10 ²⁴

The expression of the value of electromagnetic quantities benefits of large or small prefixes, more often than in other scientific fields. For example, it is common to speak of fA current, $P\Omega$ resistance, or aF capacitance values.

Definition of units in the present SI

Triple point

Temperature

an artefact:

The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

a natural property

The kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

273.16 K (0.01°C)

an idealized experiment

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length [...] would produce a force equal to 2×10^{-7} newton per metre of length

The realization of the units

Realization (VIM 5.1 ☑)

The realization of the definition of a unit can be provided by a measuring system, a material measure, or a reference material.

The realization of the units

Realization (VIM 5.1 ♂)

The realization of the definition of a unit can be provided by a measuring system, a material measure, or a reference material.

Examples

an artefact:

The international prototype of the kilogram is the realization of the kilogram.

a device

A triple point of water cell is a realization of the kelvin.

an experiment

The current balance is a realization of the ampere.

Defining and realizing units

Reproduction (VIM 5.1 ♂)

The *reproduction* of a unit consists in realizing the unit not from its definition but in setting up a highly reproducible measurement standard based on a physical phenomenon, and, usually, by assigning to it a conventional value.

Reproduction (VIM 5.1 ♂)

The *reproduction* of a unit consists in realizing the unit not from its definition but in setting up a highly reproducible measurement standard based on a physical phenomenon, and, usually, by assigning to it a conventional value.

Examples

In the present SI:

- The volt is reproduced by means of the Josephson effect.
- The ohm is reproduced by means of the quantum Hall effect.
- The thermodynamic temperature scale is reproduced through two conventional temperature scales, the *International Temperature Scale of 1990* (ITS-90) and the *Provisional Low Temperature Scale of 2000* (PLTS-2000).

In the present SI, the definition of the base unit ampere is mechanical:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.

All electromagnetic derived units have an ultimately mechanical definition also.

These quantities are exact:

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m the magnetic constant;}$$

$$\epsilon_0 = (\mu_0 c^2)^{-1} = 8.854 \, 187 \, 817 \dots \text{ pF/m, the electric constant}$$

$$Z_0 = \mu_0 \, c = \sqrt{\mu_0 \, \epsilon_0^{-1}} = 376.730 \, 313 \, 4 \dots \Omega, \text{ the impedance of free space}$$

 μ_0, ϵ_0 constant \Rightarrow realization of SI units of impedance.

Realization of the ampere The (electrodynamic) ampere balance (Vigoreux, 1965)

Ampère force law:

$$F = \frac{\mu_0}{4\pi} \int_{\Gamma_1} \int_{\Gamma_2} \frac{l_1 \, d\ell_1 \times l_2 \, d\ell_2 \times r_{21}}{|r_{21}|^2}$$

If $I_1 = I_2$, $F = \mu_0 k I^2$ where k is computed from geometrical measurements

Realization of the volt

The (electrostatic) voltage balance

Force between plates:
$$F = \epsilon_0 \frac{S}{2d^2} V^2 = \epsilon_0 k V^2$$

where k is computed from geometrical measurements

Luca Callegaro (INRIM)

Realization of the volt

Cylindrical-electrode voltage balance, PTB (Siencknecht and Funck, 1986)

Fig. 1. Perspective view of the PTB voltage balance. 1 Inner electrode, 2 high-voltage electrode, 3 guard electrode, 4 carriage of displace unit, 5 driving device for displace unit, 6 counterweight of displace unit, 7 balance beam, 8 central joint of balance beam, 9 load joint of balance beam, 10 counterbalance weight, 11 position sensor, 12 retainer for balance beam, 13 load-changing device, 14 device for centering and vertical electrode adjustment, 15 interferometers for Δ-meassurement, 16 light beam of natrefroemters for Δ-measurement, 17 light beam of autocollimator for vertical electrode adjustment

 $V = 10\,186\,\mathrm{V} = 1000 \times E_{\mathrm{Weston}}; \ m = 2\,\mathrm{g}$!

Realization of the volt

Mercury-electrode elevation, CSIRO Australia (Sloggett et al., 1985)

$$V = \sqrt{\frac{2\rho g}{\epsilon_0}} d\sqrt{h}. \quad V = \text{kV}, \ d = 600 \ \text{\mum}, \ u_V = 0.33 \times 10^{-6}$$

Realization of the electrical watt

The watt balance, or Kibble balance

Solves the problem of geometrical measurements!

- Weighing mode: $F = B\ell I = \frac{d\Phi}{dz}I$ • Moving mode: $E = \frac{d\Phi}{dt} = \frac{d\Phi}{dz}\frac{dz}{dt} = \frac{d\Phi}{dz}v$
- Fv = EI: $P_m = P_e$

The Kibble balance (Robinson and Schlamminger, 2016)

Solves the problem of geometrical measurements!

Figure 1. The Kibble balance in weighing mode.

moving mode

Figure 2. The Kibble balance in moving mode.

The Kibble balance evolution NPL, Kibble (1976) for the gyromagnetic ratio of the proton

The Kibble balance: evolution NRC, Bryan P. Kibble and I. Robinson, 2011

The Kibble balance: evolution NIST-3

The Kibble balance: evolution The next generation: NIST-4, 2016

The Kibble balance: evolution The next generation: NPL, 2017

The Kibble balance Determination of the Planck constant

To be discussed again after the quantum experiments

• mgv = El• $E = n\frac{f_E}{K_J}$ • $I = \frac{V_I}{R} = \frac{f_I}{K_J}\frac{1}{rR_K}$ • $K_J = \frac{2e}{h}$ • $R_K = \frac{h}{e^2}$ $\Rightarrow mgv = hf_E f_I \frac{n}{r}$

h can be measured mechanically

Quantum electrical metrology experiments

Macroscopic quantum effect that display an electrical quantity related to fundamental constants

- quantized resistance: the quantum Hall effect
- quantized flux counting: the Josephson effect
- quantized charge counting: single-electron counting devices

The quantum Hall effect

AlGaAs/GaAs Hall bar heterostructure, $1 \text{ mm} \times 0.4 \text{ mm}$;

The quantum Hall effect

- $R_{\rm H} = V_{\rm H}/I$ Hall resistance;
- $R_x = V_x/I$ longitudinal resistance.

The quantum Hall effect

Each plateau *i* is centered on a resistance value $R_{\rm H} = R_{\rm K}/i$, with *i* integer

$$R_{\rm K}=\frac{h}{e^2}=\frac{\mu_0\ c}{2\alpha}.$$

 $R_{\rm K}$ is linked to the fine structure constant α which can be measured by non-electrical means.

Quantum Hall array resistance standards

(a) 10 k Ω QHARS design (Ortolano et al., 2015)

(b) 1 MΩ QHARS (Oe et al., 2016)

10 k
$$\Omega$$
 array: $R_{10\,\mathrm{k}\Omega}=rac{203}{262}R_\mathrm{H}=(1-3.4 imes10^{-8}) imes10\,\mathrm{k}\Omega$

Graphene for QHE

Graphene for QHE PTB graphene Hall bar

Graphene for QHE (Ribeiro-Palau et al., 2015)

Quantized charge counting

Single charge confinement

Single-electron box, coupled to an external circuit with a tunnel junction (with tunnel resistance R_{T} and capacitance C) and a capacitor C_{g} .

occupation number n versus applied bias voltage V.

Quantized charge counting Nanodevices

Semiconductor single-electron pumps (courtesy PTB).

Luca Callegaro (INRIM)

Counting flux quanta Josephson junctions

Josephson junction:

- two superconductors coupled by a tunneling barrier
- have coupled wavefunctions

Counting flux quanta

frequency to voltage converter: the (inverse AC) Josephson effect

Under proper I_{rf} excitation amplitude of frequency f_{rf}

$$V_{\rm dc} = n\Phi_0 f_{\rm rf} = \frac{n}{K_{\rm J}} f_{\rm rf}$$

where

$$\begin{split} \Phi_0 &= h/2e = 2.067\,833\,831(13)\times 10^{-15}\,\text{Wb} \quad [6.1\times 10^{-9}] \text{ is the flux quantum;} \\ K_J &= 2e/h = 1/\Phi_0 = 483\,597.8525(30)\,\text{GHz/V} \text{ is the Josephson constant;} \\ n \text{ is a small integer.} \end{split}$$

Feasible drive frequencies: $f_{\rm rf} = 70 \, {\rm GHz} \implies V_{\rm dc} = 150 \, \mu {\rm V}.$

Counting flux quanta

frequency to voltage converter: the (inverse AC) Josephson effect

The I - V characteristic of a Josephson array (256 junctions) under microwave irradiation. Steps $n = 0, \pm 1, \pm 2$ are visible. $f \approx 73$ GHz

Counting flux quanta Josephson binary DAC

Josephson junction binary array chip. 13 bit+sign DAC with 8192 superconducting-normal metal-insulator-superconductor (SNIS) junctions. The junctions are geometrically arranged over 32 parallel strips of 256 junctions each. f = 70 GHz. $V_{\text{fullscale}} \approx \pm 1.2$ V

The quantum experiments in the framework of the present SI

Knowledge in 1989 (CODATA):

- $K_{\rm J} = 483\,597.9(2)\,{\rm GHz/V}$ [4 × 10⁻⁷]
- $R_{\rm K} = 25\,812.807(5)\,\Omega$ $[2 \times 10^{-7}]$

but, *reproducibility* of Josephson and quantum Hall experiments in different experiments and different laboratories was much higher: $10^{-9}-10^{-10}$

Solution: invent non-SI units! 18th CGPM resolution 6: Valid since January 1, 1990: $K_{J-90} = 483597.9 \text{ GHz/V}$ [exact] $R_{K-90} = 25812.807 \Omega$ [exact]

To K_{J-90} and R_{K-90} the conventional units Ω_{90} , H_{90} , F_{90} , A_{90} , W_{90} are associated. These are the electrical units in use nowadays.

The quantum experiments in the present SI Present status of the conventional units

Becuase of improvements in the measurement of fundamental constants, today (CODATA 2014)

$$\begin{split} & \mathcal{K}_{\rm J} \,=\, 483\,597.8525(30)\,{\rm GHz/V} \qquad [6.1\times10^{-9}] \\ & \mathcal{R}_{\rm K} \,=\, 25\,812.807\,455\,5(59)\,\Omega \qquad [2.3\times10^{-10}] \end{split}$$

 $M_{\rm K} = 23.012.007 + 33.3(39).22$

Therefore

 $V_{90} = 1 + 9.8(6) \times 10^{-8} \text{ V}$ $\Omega_{90} = 1 - 1.764(2) \times 10^{-8} \Omega$

 \Rightarrow Unacceptable deviation of the conventional units respect to the SI units

The Kibble balance Determination of the Planck constant

Now the derivation can be clarified

• mgv = EI• $E = n\frac{f_E}{K_J}$ • $I = \frac{V_I}{R} = \frac{f_I}{K_J}\frac{1}{rR_K}$ • $K_J = \frac{2e}{h}$ • $R_K = \frac{h}{e^2}$ $\Rightarrow mgv = hf_E f_I \frac{n}{r}$

h can be measured mechanically

The problem of the kilogram

The International Prototype Kilogram compared with its *témoins* IPK might have lost 35 µg over 130 years

The forthcoming SI More than 10 years of discussions

INSTITUTE OF PHYSICS PUBLISHING

Metrologia 42 (2005) 71-80

doi:10.1088/0026-1394/42/2/001

METROLOGIA

Redefinition of the kilogram: a decision whose time has come

Ian M Mills¹, Peter J Mohr², Terry J Quinn³, Barry N Taylor² and Edwin R Williams²

The forthcoming SI

The seven base units

The SI is the system of units in which:

s The unperturbed ground state hyperfine transition frequency of the caesium 133 atom $\Delta\nu_{Cs}$ is 9 192 631 770 Hz;

m the speed of light in vacuum c is 299792458 m/s;

- kg the Planck constant h is $6.62607015 \times 10^{-34}$ Js;
- A the elementary charge e is $1.602176634 \times 10^{-19}$ C;
- K the Boltzmann constant k is 1.380649×10^{-23} J/K;
- mol the Avogadro constant $N_{\rm A}$ is $6.02214076 \times 10^{23} \, {\rm mol}^{-1}$;
 - cd the luminous efficacy of monochromatic radiation of frequency 540 \times 10¹² Hz, $K_{\rm cd},$ is 683 lm/W,

where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, Im, W, respectively, are related to the units second, metre, kilogram, ampere, kelvin, mole, and candela, with unit symbols s, m, kg, A, K, mol, cd, respectively, according to Hz = s⁻¹, $J = m^2 kg s^{-2}$, C = A s, Im = cd sr, $W = m^2 kg s^{-3}$.

The forthcoming SI

Redefinition of the SI base of interest for electromagnetism:

- kg the kilogram;
 - A the ampere;

by fixing the values of the fundamental constants:

- *h* Planck constant;
- e elementary charge;

The forthcoming SI: the base unit ampere

The ampere will be redefined as:

The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be $1.602\,176\,634 \times 10^{-19}$ when expressed in the unit C, which is equal to A s, where the second is defined in terms of $\Delta\nu_{Cs}$.

The kilogram will be redefined as:

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15×10^{-34} when expressed in the unit J s, which is equal to kgm²s⁻¹, where the metre and the second are defined in terms of c and $\Delta\nu_{Cs}$.

The forthcoming SI: realization of the units

Consequences of the redefinition

e will be exact;

 \Rightarrow any electron-counting experiment will be a realization of the ampere;

$$R_{\mathsf{K}} = rac{h}{e^2}$$
 will be **exact**;

 \Rightarrow the quantum Hall effect will be a realization of the ohm;

$$K_{\rm J} = \frac{2e}{h}$$
 will be exact;

- \Rightarrow the Josephson effect will be a realization of the volt;
- ⇒ Combining Josephson and quantum Hall effects with Ohm's law will be a realization of the ampere.

The forthcoming SI: electromagnetic fundamental constants

 $\mu_0 \text{ the magnetic constant will be no more } 4\pi \times 10^{-7} \text{ H/m:}$ not exact and subject of measurement; $\epsilon_0 = \frac{1}{\mu_0 c^2} \text{ the electric constant will be no more exact;}$ $\Rightarrow \epsilon_0 \text{ and } \mu_0 \text{ will have the same relative uncertainty}$ and will be totally correlated (correlation coefficient = -1) $Z_0 = \mu_0 c \text{ the impedance of free space, and}$ $Y_0 = (\mu_0 c)^{-1} \text{ the admittance of free space will be no more exact;}$

The forthcoming SI: realization of the units

A new role for the mechanical experiments

- h will be exact;
- ⇒ The Kibble balance, if traceable to K_J and R_K , will be a realization of the kilogram.

Same for the voltage and the current balances

An alternative route to realize the kilogram: silicon atom counting

$$egin{aligned} M_{ extsf{sphere}} &= N \cdot m_{ extsf{Si}} \ &= rac{V_{ extsf{sphere}}}{v_{ extsf{cell}}} m_{ extsf{Si}} \end{aligned}$$

Silicon atom counting

 V_{sphere} : spherical interferometer

*m*_{Si}: single ²⁸Si crystal

 $m_{\rm Si}/h$: known $[10^{-9}]$ from atomic experiments

$$\begin{split} M_{\rm sphere} &= \frac{V_{\rm sphere}}{v_{\rm cell}} \left(\frac{m_{\rm Si}}{h}\right) \, h \\ {\rm And} \ h \ {\rm is \ fixed \ in \ the \ new \ SI!} \end{split}$$

The forthcoming SI: benefits

Any physical experiment that satisfies the definition is a realization of the unit;

PAPER

Milligram mass metrology using an electrostatic force balance

Gordon A Shaw¹, Julian Stirling¹, John A Kraman², Alexander Moses¹, Patrick Abbott¹, Richard Steiner¹, Andrew Koffman¹, Jon R Pratt¹ and Zeina J Kubarych¹ Published 28 September 2016 • © 2016 US Gord. Copyright (NIST) Metrologies, Volume 23, Number 3 Foreau en Bealtinder, Mainteanne and Disemisation of the New Micram

Units can be realized at any level (multiple, submultiple)

The CODATA 2017 adjustment of the fundamental constants Minimum change of the units size

The CODATA 2017 Values of h, e, k, and N_A for the Revision of the SI*

David B. Newell[†], Peter J. Mohr[‡], Barry N. Taylor[§], and Eite Tiesinga[¶]

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA

(Dated: July 24, 2017)

Quantity	Value	Rel. stand. uncert $u_{\rm r}$
h	$6.626070147(67)\times10^{-34}~{\rm J~s}$	1.0×10^{-8}
e	$1.6021766338(81) \times 10^{-19} \text{ C}$	5.1×10^{-9}
$_{k}$	$1.38064901(51) \times 10^{-23} \text{ J K}^{-1}$	3.7×10^{-7}
N_{A}	$6.022140761(61) \times 10^{23} \text{ mol}^{-1}$	1.0×10^{-8}

TABLE II The CODATA 2017 adjusted values of h, e, k, and N_A

TABLE III The CODATA 2017 values of h, e, k, and $N_{\rm A}$ for the revision of the SI

Quantity	Value
h	6.62607015×10^{-34} J s
e	$1.602176634 \times 10^{-19}$ C
k	$1.380649 \times 10^{-23} \text{ J K}^{-1}$
N_{A}	$6.02214076 \times 10^{23} \text{ mol}^{-1}$

The roadmap towards the new SI

Formal decision: the CGPM

26th General Conference of Weights and Measures

The SI Implementation day

May 20, 2019 World Metrology Day

Stay prepared!

Luca Callegaro (INRIM)

Further reading

- "Draft of the 9th SI brochure," 10 Nov 2016
- CCEM Working Group on the SI, "Mise en pratique for the ampere and other electric units in the international system of units," 2017, CCEM-17-08
- P. J. Mohr, D. B. Newell, and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2014," *J. Phys. Chem. Ref. Data*, vol. 45, 2016
- J. Fischer and J. Ullrich, "The new system of units," *Nature Physics*, vol. 12, pp. 4-7, 2016
- L. Callegaro, *Electrical impedance: principles, measurement, and applications*, ser. in Sensors. Boca Raton, FL, USA: CRC press: Taylor & Francis, 2013, iSBN: 978-1-43-984910-1

Bibliography

"Draft of the 9th SI brochure," 10 Nov 2016.

- L. Callegaro, Electrical impedance: principles, measurement, and applications, ser. in Sensors. Boca Raton, FL, USA: CRC press: Taylor & Francis, 2013, iSBN: 978-1-43-984910-1.
- A. Campbell, "On a standard of mutual inductance," Proc. Royal Soc. of London A, vol. 79, no. 532, pp. 428–435, 1907.
- CCEM Working Group on the SI, "Mise en pratique for the ampere and other electric units in the international system of units," 2017, CCEM-17-08.
- A. F. Dunn, "Determination of an absolute scale of capacitance," Canadian Journal of Phys., vol. 42, pp. 53–69, Jan 1964.
- J. Fischer and J. Ullrich, "The new system of units," Nature Physics, vol. 12, pp. 4-7, 2016.
- B. P. Kibble, A measurement of the gyromagnetic ratio of the proton by the strong field method. Springer US, 1976, vol. Atomic Masses and Fundamental Constants, no. 5, iSBN 978-1-4684-2682-3.
- D. G. Lampard, "A new theorem in electrostatics with applications to calculable standards of capacitance," Proc. IEE C: Monographs, vol. 216M, pp. 271–282, Jan 1957.
- H. Linckh and F. Brasack, "Eine Methode zur Bestimmung des Widerstandswertes aus der Induktivität," *Metrologia*, vol. 4, pp. 94–101, 1968.
- P. J. Mohr, D. B. Newell, and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2014," J. Phys. Chem. Ref. Data, vol. 45, 2016.
- T. Oe, S. Gorwadkar, T. Itatani, and Ν. Η. Kaneko, "Development of 1 mω quantum Hall array resistance standards," IEEE Trans. Instr. Meas., pp. 1–7, 2016, in press.
- M. Ortolano, M. Abrate, and L. Callegaro, "On the synthesis of quantum Hall array resistance standards," *Metrologia*, vol. 52, pp. 31–39, 2015.
- R. Ribeiro-Palau, F. Lafont, J. B-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier, and F. Schopfer, "Quantum hall resistance standard in graphene devices under relaxed experimental conditions," *Nature Nanotech.*, vol. 10, pp. 965-971, 2015.
- A. Robinson and S. Schlamminger, "The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass," *Metrologia*, vol. 53, pp. A46–A74, 2016.
- V. Siencknecht and T. Funck, "Realization of the SI unit volt by means of a voltage balance," *Metrologia*, pp. 209-212, 1986.
- G. J. Sloggett, W. K. Clothier, M. F. Currey, D. J. Benjamin, and H. Bairnsfather, "Absolute determination of the volt using a liquid electrometer," *IEEE Trans. Instr. Meas.*, vol. IM-34, pp. 187–191, 1985.
- P. Vigoreux, "A determination of the ampere," Metrologia, vol. 1, pp. 3-7, 1965.