

Università degli Studi di Genova Ingegneria Meccanica Misure e Strumentazione

VALUTAZIONE DELL'INCERTEZZA DI MISURA

Valutazione dell'incertezza di misura

- Necessaria ogni volta che le misure servono per prendere decisioni, anche automatiche (es. controllo di qualità, rilevamento limiti di accettabilità per la sicurezza, sistemi di regolazione)
- Richiesta dalla normativa per prove o per gestione della qualità
- Per valutare l'incertezza occorre studiare il comportamento *reale* dei sistemi di misura, mediante metodi statistico- probabilistici.

Riferimenti normativi

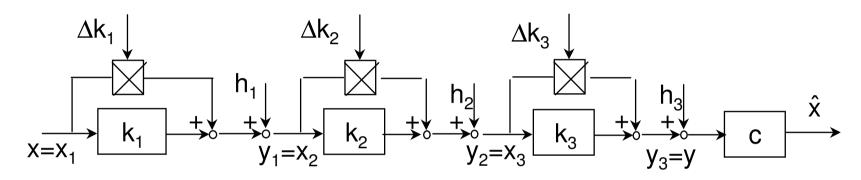
- UNI CEI ENV 13005 31/03/1990: Guida all'espressione della incertezza di misura:
 "Nel riportare il risultato della misurazione di una grandezza fisica, è obbligatorio fornire una qualche indicazione quantitativa della qualità del risultato"
- ISO 10012: Measurement management systems Requirements for measurement processes and measuring equipment: "The measurement uncertainty shall be estimated for each measurement process covered by the measurement management system"
- UNI CEI EN ISO/IEC 17025: Requisiti generali per la competenza dei Laboratori di prova e di taratura: I laboratori di prova devono avere e devono applicare una procedura per stimare l'incertezza delle misure"

Comportamento ideale di un dispositivo per misurazione


Ipotesi:

 l'uscita del dispositivo dipende solo dall'ingresso che a noi interessa (cioè non risente di altri ingressi di disturbo);

 l'uscita è legata all'ingresso "buono" mediante una relazione ben determinata e nota.


Comportamento **reale** di un dispositivo per misurazione a funzionamento lineare

- Vi sono ingressi di disturbo che si sommano all'uscita
- Le trasformazioni sono soggette a variazioni e/o non sono ben conosciute

Le sorgenti di disturbo possono essere rappresentate come *grandezze* (o variabili) di ingresso.

Comportamento reale di una catena di misura (lineare)

Funzione di sensibilità:

$$\hat{x} = x + \frac{\Delta k_1}{k_1} x + \frac{\Delta k_2}{k_2} x + \frac{\Delta k_3}{k_3} x + ck_2 k_3 h_1 + ck_3 h_2 + ch_3 = x + e$$

Modello per la valutazione dell'incertezza

Caso A:

Previsione dell'incertezza di una misura non ancora eseguita (per caratterizzare la catena di misura)

• Si ipotizza un valore del misurando, $x = x_0$. Dunque il valore di misura è la somma del valore del misurando e dell'errore

$$\hat{X} = X_0 + e$$

 L'incertezza standard u è la deviazione standard dell'errore, che, a sua volta è una v.a. combinazione lineare di v.a. che rappresentano gli ingressi di distrurbo.

Modello per la valutazione dell'incertezza

Caso B:

Valutazione dell'incertezza di una misura effettivamente eseguita (per caratterizzare la misura)

 Il valore del misurando è la somma del valore di misura e della correzione dell'errore

$$X = \hat{X} + \kappa = \hat{X} - e$$

 L'incertezza standard u è la deviazione standard della correzione, uguale alla deviazione standard dell'errore, che, è sempre una v.a. combinazione lineare di v.a. che rappresentano gli ingressi di distrurbo.

Valutazione dell'incertezza standard di misura

EQUAZIONE DI SENSIBILITÀ

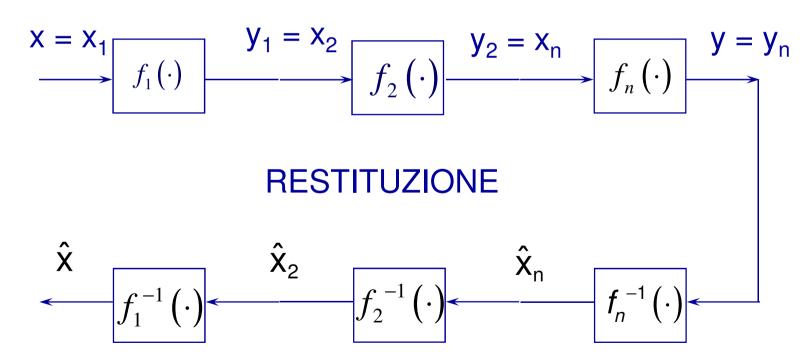
$$e = \sum_{i=1}^{2n} a_i V_i$$

INCERTEZZA STANDARD

Grandezze di ingresso non correlate:

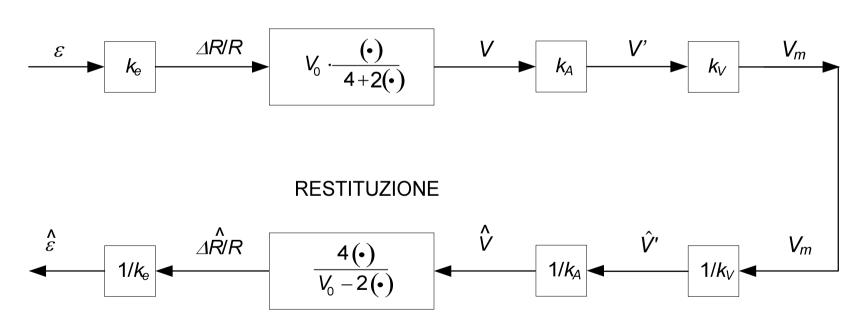
$$u = \sigma_e = \sqrt{\sum_{i=1}^{2n} a_i^2 \sigma_i^2}$$

Grandezze di ingresso correlate:


$$u = \sigma_e = \sqrt{\sum_{i=1}^{2n} \sum_{j=1}^{2n} a_i a_j \rho_{ij} \sigma_i \sigma_j}$$

Procedura per la valutazione dell'incertezza di una misura singola

- 1. Individuare tutte le sorgenti non trascurabili di incertezza
- Individuare in quale punto della catena di misura si manifestano
- 3. Capire se sono di tipo additivo o moltiplicativo
- Scrivere la funzione di sensibilità
- 5. Fissare un valore di riferimento del misurando
- 6. Procurarsi i valori numeri necessari (incertezze standard delle singole componenti e relative sensibilità, eventuali coefficienti di correlazione), utilizzando le informazioni disponibili
- Calcolare l'incertezza standard della misura mediante la formula che porge l'incertezza di una combinazione lineare di variabili aleatorie.


Appendice: Studio del comportamento nominale di una catena di misura - Generalizzazione

TRASDUZIONE

Esempio: catena di misura estensimetrica

TRASDUZIONE

Esempio: valutazione dell'incertezza di una misura estensimetrica

Consideriamo un sistema per misure di deformazione, avente le seguenti caratteristiche tecniche.

- Estensimetro, sensibilità: $k_e = 2.0 \frac{\mu\Omega/\Omega}{\mu m/m} \pm 1\%$ (sensibilità dell'estensimetro)
- Tensione di alimentazione del ponte: $V_0 = 5 \text{ V}$
- Amplificatore:
 - Guadagno: $k_A = 100 \pm 1\%$
 - Rumore in uscita 1 mV rms
- Voltmetro
 - Fondo scala 1 V
 - Incertezza ±1 per mille f.s.

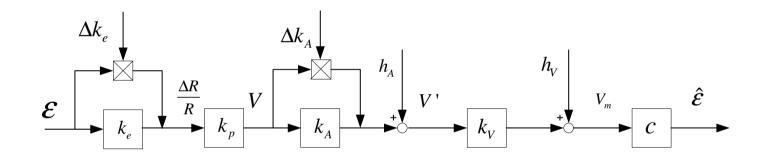
Eseguiamo una misura e leggiamo sul voltmetro il valore $V_m = 10mV$ Determinare il risultato finale e l'incertezza standard.

Studio del comportamento nominale

La sensibilità complessiva è dunque pari a:

$$k = 0.25 \frac{mV}{\mu m/m}$$

La costante di taratura è


$$c = 4\frac{\mu m/m}{mV}$$

Il valore di misura è

$$\hat{\varepsilon} = cV_m = 40 \frac{\mu m}{m}$$

Studio del comportamento reale

Lo schema a blocchi che descrive il comportamento reale è

La funzione di sensibilità è:

$$e = \varepsilon \frac{\Delta k_e}{k_e} + \varepsilon \frac{\Delta k_A}{k_A} + ck_V h_A + ch_V$$

$$\cong \hat{\varepsilon} \frac{\Delta k_e}{k_e} + \hat{\varepsilon} \frac{\Delta k_A}{k_A} + ck_V h_A + ch_V$$

Calcolo

N	Grandezza ingresso	di	Incertezza standard	Unità misura	Sensibilità	Unità misura	Incertezza rif. misurando
1	Sensibilità estensimetro		0,00577	1	40	$\frac{\mu m}{m}$	0,231
2	Guadagno voltmetro		0,00577	1	40	$\frac{\mu m}{m}$	0,231
3	Rumore amplificatore		1	mV	4	$\frac{\mu m}{m}$	4,00
4	Incertezza voltmetro		0,577	mV	4	$\frac{\mu m}{m}$	2,31
	•			•		•	u = 4,6

Il risultato finale è

$$\varepsilon = 40 \frac{\mu m}{m}$$
 con incertezza standard pari a $5 \frac{\mu m}{m}$,