

Università degli Studi di Genova Ingegneria Meccanica Misure e Strumentazione

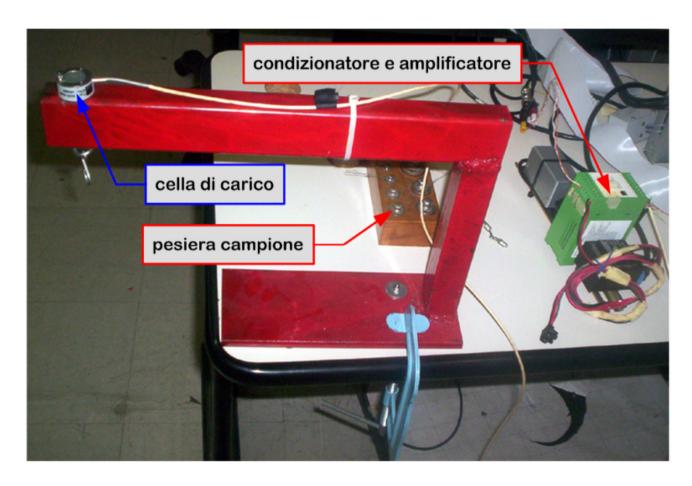
PROCEDIMENTI DI TARATURA

Operazione di taratura

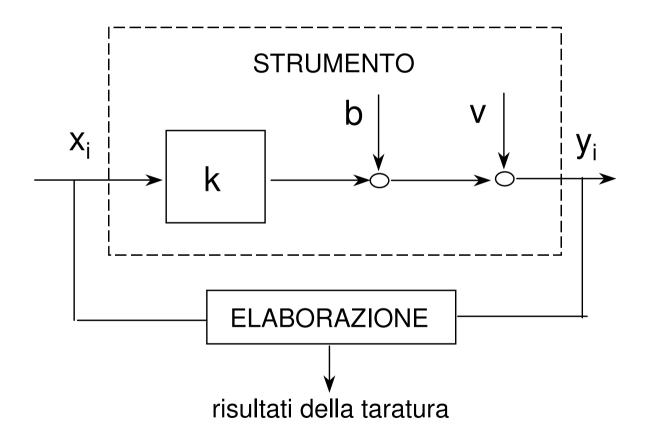
Operazione sperimentale che ha lo scopo di

- Determinare la curva caratteristica y = f(x) di uno strumento di misura
- Fornire informazioni utili per la valutazione dell'incertezza da assegnare alle misure che si possono effettuare con tale strumento

Esempio: taratura di una cella di carico



Modello di riferimento e impostazione dell'esperimento



Metodo dei minimi quadrati

Criterio: stimiamo *k* e *b* con i valori che rendono minima la somma degli scarti quadratici dei dati sperimentali rispetto alla curva caratteristica

$$\sum_{i=1}^{N} \left[y_i - (kx_i + b) \right]^2$$

Occorre risolvere un problema di minimo. Indichiamo i valori stimati con

$$\hat{k}$$
, \hat{b}

Regressione lineare (univariata)

Se si rappresentano gli scarti con la variabile aleatoria v, si può valutare mediante i dati sperimentali la varianza di v e delle stime di k e di b, cioè

$$\sigma_v^2, \sigma_k^2, \sigma_b^2, \rho_{kb}$$

Riassumendo, elaborando i dati di taratura si ottengono

$$\hat{k}$$
, \hat{b} , σ_v^2 , σ_k^2 , σ_b^2 , ρ_{kb}

Nota sul linguaggio

Che cosa si intende per curva di taratura? Si possono intendere due cose:

• La curva che si ottiene mediante l'operazione di taratura y = f(x)

 La curva di restituzione (che consente di "tarare" lo strumento)

$$\hat{\mathbf{x}} = f^{-1}(\mathbf{x})$$

Noi seguiamo la seconda convenzione e chiamiamo curva caratteristica la y = f(x).

metodo dei minimi quadrati

$$\hat{k} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{N} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{\sum_{i=1}^{N} x_i^2 - N \overline{x}^2}$$

$$\hat{b} = \overline{y} - \hat{k}\overline{x}$$

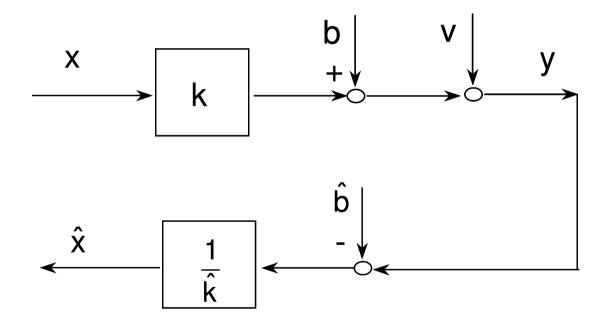
$$\sigma_{v} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_{i} - \hat{k}x_{i} - \hat{b})^{2}}$$

$$\sigma_k^2 = \frac{1}{N} \frac{\sigma_v^2}{\sigma_x^2}; \sigma_b^2 = \frac{\sigma_v^2}{N} \frac{\sigma_x^2 + \overline{x}^2}{\sigma_x^2}; \rho_{kb} = -\sqrt{\frac{\overline{x}^2}{\sigma_x^2 + \overline{x}^2}}$$

ove

$$\sigma_{x}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} = \frac{1}{N} \left(\sum_{i=1}^{N} x_{i}^{2} - N\overline{x}^{2} \right) = \left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} \right) - \overline{x}^{2}$$

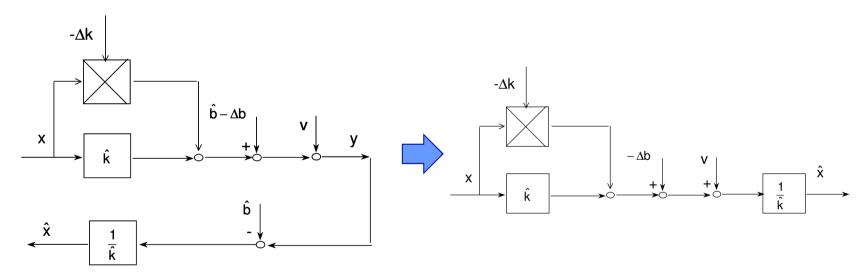
Impiego dello strumento tarato: restituzione



Impiego dello strumento tarato: valutazione dell'incertezza

$$\hat{k} = k + \Delta k \Rightarrow k = \hat{k} - \Delta k$$

 $\hat{b} = b + \Delta b \Rightarrow b = \hat{b} - \Delta b$



Valutazione dell'incertezza

Ipotesi:

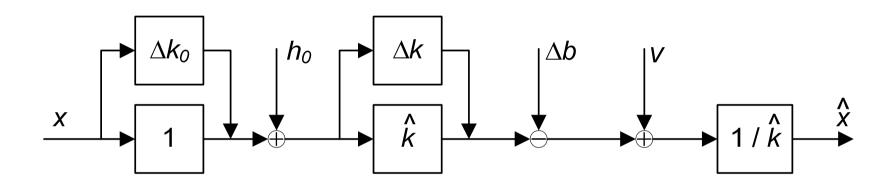
- Incertezza dei campioni trascurabile
- Condizioni di impiego assimilabili a quelle di taratura

$$e = \frac{1}{\hat{k}} \left(v - \hat{x} \Delta k - \Delta b \right)$$

$$u = \frac{1}{\hat{k}} \sqrt{\sigma_v^2 + \left(\hat{x}^2 \sigma_k^2 + \sigma_b^2 + 2\rho_{kb} \hat{x} \sigma_k \sigma_b \right)} =$$

$$\sqrt{\left(\frac{\sigma_v}{\hat{k}} \right)^2 + \left[\left(\frac{\hat{x}}{\hat{k}} \sigma_k \right)^2 + \left(\frac{\sigma_b}{\hat{k}} \right)^2 + 2\rho_{kb} \left(\frac{\hat{x}}{\hat{k}} \sigma_k \right) \left(\frac{\sigma_b}{\hat{k}} \right) \right]}.$$

Incertezza dei campioni non trascurabile



$$u = \sqrt{x_0^2 \sigma_{k_0}^2 + \sigma_{h_0}^2 + \frac{1}{\hat{k}^2} \left[\sigma_{v}^2 + \left(x_0^2 \sigma_{k}^2 + \sigma_{b}^2 + 2\rho_{kb} x_0 \sigma_{k} \sigma_{b} \right) \right]}$$

Esempio: taratura di un dinamometro

Un dinamometro è tarato applicando (in trazione) 14 masse campione aventi un contributo additivo di incertezza pari a 1,0 g (comprensivo del filo di rame usato per applicare i pesi) e un contributo proporzionale di incertezza pari allo 0.5%. I risultati dell'esperimento sono i seguenti:

campioni [kg]	0,01	0,02	0,05	0,1	0,15	0,17	0,2	0,3
campioni [N]	0,0981	0,1962	0,4905	0,981	1,4715	1,6677	1,962	2,943
Uscite [mV]	-7,6	-4,2	1,22	9,2	15	18	26	41

campioni [kg]	0,5	0,7	1	1,2	1,5	1,7
campioni [N]	4,905	6,867	9,81	11,772	14,715	16,677
Uscite [mV]	72	104	152	184	235	262

Elaborazione dei dati

Considerando quindi gli ingressi x [N] applicati al sensore e le corrispondenti indicazioni strumentali y [mV], in corrispondenza del voltmetro, si applicano le formule classiche della taratura:

$$\hat{k} = \frac{\sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

$$\hat{b} = \overline{y} - \hat{k}\overline{x} .$$

Si ottengono i parametri della curva caratteristica,

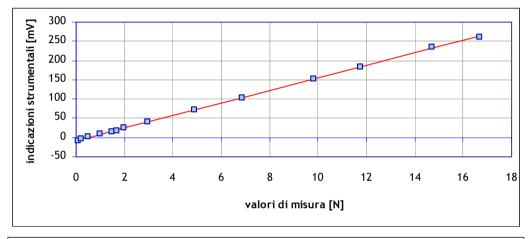
$$\hat{k} = 16,302 \text{ mV/N},$$

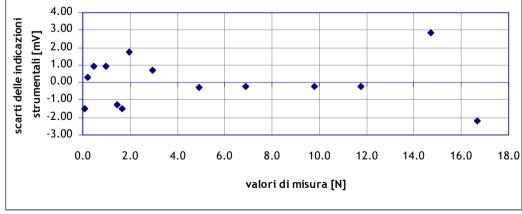
$$\hat{b} = -7,700 \text{ mV},$$

e la curva caratteristica è dunque

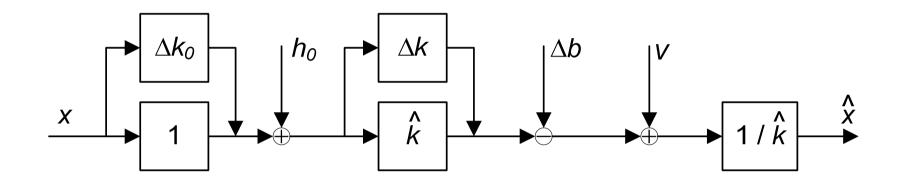
$$y = (16,302 x - 7,7) mV$$

Curva Caratteristica e relativi scarti





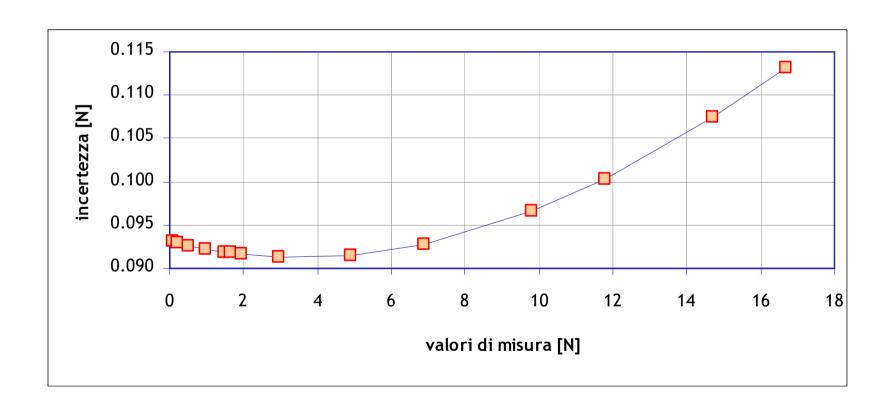
Incertezza dello strumento tarato



Formula per la valutazione dell'incertezza

$$U = \sqrt{X_0^2 \sigma_{k_0}^2 + \sigma_{h_0}^2 + \frac{1}{\hat{k}^2} \left[\sigma_v^2 + \left(X_0^2 \sigma_k^2 + \sigma_b^2 + 2 \rho_{kb} X_0 \sigma_k \sigma_b \right) \right]}$$

Incertezza riferita al campo di misura



Misura con lo strumento tarato

Supponiamo di effettuare una misura e di leggere

$$y = 175 \text{ mV}$$

Che valore di misura devo assegnare?

$$\hat{x} = \frac{y - \hat{b}}{\hat{k}} = 11,207 \text{ N}$$

Valutazione dell'incertezza: calcoli preliminari

$$\hat{x} = x_0 = 11,207 \text{ N} \qquad c = 0,0613 \frac{\text{N}}{\text{mV}} \qquad \sigma_v = \sqrt{\frac{1}{N-2} \sum_i \left[y_i - \left(\hat{k} x_i + \hat{b} \right) \right]^2} = 1,420 \text{ mV}$$

$$\sigma_k = \sqrt{\frac{1}{N} \frac{\sigma_v^2}{\sigma_x^2}} = 0,069 \text{ mV/N}; \qquad \sigma_b = \sqrt{\frac{\sigma_v^2}{N} \left(1 + \frac{\overline{x}^2}{\sigma_x^2} \right)} = 0,529 \text{ mV}; \qquad \rho_{kb} = -\sqrt{\frac{\overline{x}^2}{\sigma_x^2 + \overline{x}^2}} = 0,696.$$

Valutazione dell'incertezza

i	Grandezza di ingresso	Incertezza tipo	Unità di misura	Sensibilità	Unità di misura	Incertezza riferita al misurando	
1	Variabile v	1,42	mV	0,0613	$\frac{N}{mV}$	0,0871	
2	Incertezza su b	0,529	mV	0,0613	$\frac{N}{mV}$	0,0324	0.0044
3	Incertezza su k	0,0691	$\frac{\text{mV}}{\text{N}}$	0,687	$\frac{N^2}{mV}$	0,0475	0,0341
4	Incertezza campioni (%)	0,00289	1	11,2	N	0,0324	
5	Incertezza campioni (+)	0,00566	N	1,00	1	0,00566	
u =						0,099	

Nota: fra le grandezze 2 e 3 sussiste una correlazione, caratterizzata da $\,
ho_{\scriptscriptstyle 23} =
ho_{\scriptscriptstyle 32} = -0,696 \,$

Il risultato finale della misura può essere espresso nella forma

x = 11,2 N con incertezza standard pari a 0,1 N